博碩士論文 993208014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.188.121.206
姓名 黃騰毅(Teng-Yi Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 金屬氫化物儲氫容器之疊層模組設計製作與實驗分析
(Modular stack design and experimental analysis of a metal-hydride storage vessel)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文為金屬氫化物儲氫容器之疊層模組設計製作與實驗分析,儲氫容器內部設計包含熱傳增強、氫氣通道之疊層模組。儲氫容器之熱傳能力對儲氫合金儲、放氫效率有明顯影響,因此容器設計主軸在於,如何將儲氫合金於儲氫過程迅速地導出該生成熱量;於放氫過程快速由容器外部導入熱量。儲氫容器之熱傳增強結構,可提升儲氫合金粉末熱傳能力;疊層設計可上下分隔合金粉末之裝填空間,減少容器底層之儲氫合金微粉化堆積的機會,避免儲氫合金因緻密堆積對儲、放氫效率的不良影響。疊層模組結構上亦具有多組氫氣通道設計,確保氫氣於容器內部之流動性及擴散能力。
根據原型金屬儲氫容器實驗發現,儲、放氫時容器隨環境溫度越低及越高皆具有較好的熱傳效果,可使儲氫合金維持良好的操作裝態。容器釋氫流率的設定也將影響儲氫合金的穩定放氫時間,本實驗以12、8及4LPM之釋氫流率做放氫性能測試,發現隨釋氫流率設定值越低則可延長該設定之流率,但熱管之熱傳果隨之降低。同時由儲氫合金粉末的溫度與容器壓力數值變化顯示:較高的氫氣釋放流率會導致合金粉末溫降幅度增加,溫度量測點距離容器殼體或是熱管套筒之熱傳途徑較近時,該位置溫度可以較快趨近外界溫度。
本文章實驗儲氫容器設計之熱管端熱傳途徑具有較多的接觸熱組,因此該熱管熱傳效果有限,但隨儲氫合金放氫熱量需求度越高,則裝置熱管之效用越明顯。放氫速率對於容器內合金粉末溫度變化的影響,也可透過調整環境水浴溫度的方式進行最佳操作,藉由提高環境水浴溫度可提升放氫流率穩定性以及氫氣釋放之續航力。
摘要(英) This thesis presents a metal hydride storage vessel (MH vessel) design. The vessel had five sub-vessels which are called modular stacks. A stack consisted of hydrogen gas tunnels as well as heat transfer enhanced units, and was experimentally analyzed. Heat transfer efficiency has significant effect on hydrogen absorption and desorption processes of the MH vessel, therefore the main concepts of the design were to drive out the generated heat quickly in the absorption process and to provide sufficient heat energy in the desorption process. In this research, there were two ways to promote the hydride-dehydride performance of alloy powders. One is the heat transfer enhancing structures that would improve the overall thermal conductivity of the metal hydride powders, the other is the split space of modular stacks that might distribute the powders evenly in the MH vessel. The split space reduced the accumulated stress of the millimetric powders in the bottom of the vessel and also additionally improved the efficiency in the reaction processes. The modular stacks were equipped with the hydrogen gas tunnels to ensure hydrogen being able to flow and diffuse unhinderedly to split space of each stacks during the reaction processes.
The results from experiments showed that the prototype MH vessel had partial contribution to heat transfer efficacy, and made the alloy powders to maintain a better state of operation. The hydrogen discharge rate set for 12 LPM was not sustainable at the end of the desorption process. However, lower discharging rates of 8 LPM and 4 LPM virtually maintained the flow rates till the end of hydrogen desorption. The experiments revealed that the higher the discharging flow rates the more drastic temperature drops of the alloy powders. Temperatures of the metal hydride powders close to the shell of the MH vessel or the heat transfer enhanced units were found to approach the surrounding temperature rapidly. The shell of MH vessel had better heat transfer efficiency than the heat transfer enhanced units due to the thermal contact resistance of the units.
The usage of heat pipes had minor contribution for low discharging rates which could be maintained for a longer time. When the MH vessel was operated in more critical circumstances, e.g. higher hydrogen discharging rate, the heat transfer enhanced units would bring in more contribution to heat transfer. In contrast, the heat transfer enhanced units would not work obviously when the MH vessel was used in favorable circumstances. Hydrogen releasing rates and temperature of environment for the MH vessel both affected the deformation of metal hydride powders. This study showed the stability, durability and the practicability of the MH vessel could be improved using the modular stacks design.
關鍵字(中) ★ 氫氣
★ 金屬氫化物
★ 儲氫容器
★ 疊層模組
★ 熱傳增強設計
關鍵字(英) ★ hydrogen
★ metal-hydride
★ storage vessel
★ modular stack
★ heat transfer enhanced unit
論文目次 目錄
國立中央大學碩士論文授權書
論文指導教授推薦書
論文口試委員審定書
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 金屬儲氫方法 3
1.2.1 金屬合金儲氫、放氫原理 3
1.2.2 儲氫金屬合金特性 5
1.2.3 PCI曲線(Pressure-Composition-Isotherm curve) 6
1.3 金屬儲氫容器發展與設計 8
1.4 研究目的 14
第二章 金屬儲氫容器設計 19
2.1 金屬儲氫容器設計概念 19
2.1.1 容器疊層 19
2.1.2 熱傳增強 20
2.1.3 模組化 20
2.1.4 氣體通道 21
2.2 熱管元件 21
2.3 儲氫容器設計參數與組裝流程 23
2.3.1 儲氫容器設計參數 23
2.3.2 儲氫容器組裝流程 25
第三章 實驗方法 39
3.1 實驗系統架設 39
3.1.1實驗系統 39
3.1.2管路控制裝置 40
3.1.3實驗數據擷取裝置 40
3.2 實驗程序 41
3.2.1 西韋茨(Sieverts type)量測法 41
3.2.2 實驗環境條件設定 41
3.2.3 合金粉末製備與活化 41
3.2.4 儲氫 44
3.2.5 放氫 44
3.2.6 還原實驗初始狀態 45
3.2.7 實驗準確度與精確度分析 45
第四章 結果與討論 51
4.1 新型儲氫容器性能測試 51
4.1.1 儲氫容器儲氫性能 51
4.1.2 儲氫容器放氫性能 52
4.1.3 水浴溫度對儲氫容器放氫性能的影響 53
4.2 熱傳設計與實驗條件對儲氫容器溫度分佈的影響 54
4.2.1 水浴溫度對於儲氫容器儲氫反應溫度分佈的影響 54
4.2.2 釋放流率對儲氫容器放氫溫度分佈的影響 55
4.3 實驗條件對儲氫容器溫度變化的影響 59
4.3.1 放氫流率對於儲氫容器溫度變化趨勢的影響 59
4.3.2 水浴溫度對於放氫時儲氫容器溫度變化的影響 60
4.4 熱管對儲氫容器放氫性能與溫度變化的影響 61
4.4.1 熱管對於儲氫容器放氫性能的影響 61
4.4.2 熱管對於各放氫流率之儲氫容器溫度變化的影響 62
第五章 結論與未來展望 85
5.1 結論 85
5.2 未來展望 87
參考文獻 88
附錄A 儲氫容器罐體機械設計 94
A.1 儲氫容器壁厚設計 94
A.2 儲氫容器中空殼管壁厚設計 95
A.3 選用儲氫容器密封蓋之螺絲 96
A.4 螺紋鎖緊力之規範與選用 98
A.5 螺紋承載軸方向負荷有效牙數計算 99
A.6 密封蓋有效密封之螺絲間距計算 101
A.7 氫氣流通氣體通道之壓降值計算 103
附錄B 儲氫合金粉末之孔隙率與填充率 104
B.1 合金粉末之孔隙率 104
B.2 儲氫容器之合金粉末填充率 106
附錄C 儲氫容器熱傳特性 107
C.1 儲氫容器熱阻估算 107
參考文獻 Anani, A., Visintion, A., Petrov, K. and Srinivasan, S., “Alloys for hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries,” Journal of Power Sources, Vol.47, pp.261-275, 1994.
Askri, F., Jemni, A. and Nasrallah, SB., “Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor,” International Journal of Hydrogen Energy, Vol.29, pp.195-208, 2004.
Askri, F., Salah, MB., Jemni, A. and Nasrallah, SB., “Optimization of hydrogen storage in metal-hydride tanks,” International Journal of Hydrogen Energy, Vol.34, pp.897-905, 2009.
Bhouri, M., Goyette, J., Hardy, B.J., Anton, D.L., “Honeycomb metallic structure for improving heat exchange in hydrogen storage system,” International Journal of Hydrogen Energy, Vol.36, pp.6723-6738, 2011.
Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guegan A. and Marty, P., “Simulation and experimental validation of a hydrogen storage tank with metal hydrides,” International Journal of Hydrogen Energy, Vol.33, pp.98-104, 2008.
Brendan, D., MacDonald, Andrew, M., Rowe., “Impacts of external heat transfer enhancements on metal hydride storage tanks,” International Journal of Hydrogen Energy, Vol.31, pp.1741-1731, 2006.
Cui, N., Luo, J.L., Chuang, K.T., “Study of hydrogen diffusion in a- and b-phase hydrides of Mg2Ni alloy by microelectrode technique,” Journal of Electroanalytical Chemistry, Vol.503, pp.92-98, 2001.

Demircan, A., Demiralp, M., Kaplan, Y., Mat, Md. and Veziroglu, TN., “Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactor,” International Journal of Hydrogen Energy, Vol.30, pp.1437-1446, 2005.
Dhaou, H., Souahlia, A., Mellouli, S., Askri, F., Jemni, A. and Nasrallah, SB., “Experimental study of a metal hydride vessel based on a finned spiral heat exchanger,” International Journal of Hydrogen Energy, Vol.35, pp.1674-1680, 2010.
Graham, T., “On the Relation of Hydrogen to Palladium,” J. Franklin Inst., Vol.87, pp.256-266, 1869.
Guan, Jin-Chin, Yeh, Ming-Tarng, Hydrogen Storage and Transportation System, U.S. Pat., 6666034, 2003.
Heung, Leung K., Apparatus and Methods for Storing and Releasing Hydrogen, U.S. Pat., 6015041, 2000.
Jemni, A., Nasrallah, SB. and Lamloumi, J., “Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energen, Vol.24, pp.631-644, 1999.
Kaplan, Y., “Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors,” International Journal of Hydrogen Energy, Vol.34, pp.2288-2294, 2009.
Laurencelle, F., Goyette, J., “Simulation of heat transfer in a metal hydride reactor with aluminium foam,” International Journal of Hydrogen Energy, Vol.32, pp.2957-2964, 2007.
Li, G., Nishimiya, N., Satoh, H., Kamegashira, N., “Crystal structure and hydrogen absorption of TixZr1-xMn2,” Journal of Alloys and Compounds, Vol.393, pp.231-238, 2005.

Lin, Chih-Kuang, Huang, Sih-Ming, Jhang, Yu-Hao, “Effects of cyclic hydriding- dehydriding reactions of Mg2Ni alloy on the expansion deformation of a metal hydride storage vessel,” Journal of Alloys and Compounds, Vol.509, pp.7162-7167; Vol.264, pp.271-276, 2011.
Martin, M., Gommel, C., Borkhart, C. and Fromm, E., “Absorption and desorption kinetics of hydrogen storage alloys,” Journal of Alloys and Compounds, Vol.238, pp.193-201, 1996.
Mellouli, S., Askri, F., Dhaou, H., Jemni, A. and Nasrallah, SB., “A novel design of a heat exchanger for a metal-hydrogen reactor,” International Journal of Hydrogen Energy, Vol.32, pp.3501-3507, 2007.
Mellouli, S., Dhaou, H., Askri, F., Jemni, A. and Nasrallah, SB., “Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger,” International Journal of Hydrogen Energy, Vol.34, pp.9393-9401, 2009.
Mellouli, S., Dhaou, H., Askri, F., Sofiene, M., Jemni, A. and Nasrallah, SB., “Experimental and Comparative of Study of Metal Hydride Hydrogen Tanks,” International Journal of Hydrogen Energy, Vol.36, pp.12918-12922, 2011.
Munson, B. R., Young, D. F., Okiishi, T. H., Fundamentals of Fluid Mechanics, 5th Edition, Chapter 8, pp.430-434, John Wiley & Sons, Inc., U.S., 2006.
Nasako, K., Ito, Y., Hiro, N. and Osumi, M., “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy,” Journal of Alloys and Compounds, Vol.264, pp.271-276, 1998.
Pebler, A. and Gulbransen, E.A., “Equilibrium Studies on the Systems ZrCr2-H2,
ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃,” Trans. Metall. Soc. AIME, Vol.239, pp.1593-1600, 1967.
Radzimovsky, E. L., “Bolt Design for Repeated Loading,” Machine Design, Vol.24, pp.135-146, 1952.
Reilly, J.J., Wiswall, R.H., “Formation and Properties of Iron Titanium Hydride,”
Inorganic Chemistry, Vol.13, pp.218-222, 1974.
Reilly, J.J., Wiswall, R.H., “The Reaction of Hydrogen with Alloys of Magnesium and
Nickel and the Formation of Mg2NiH4,” Inorganic Chemistry, Vol.7, pp.2254-2256, 1968.
Sandrock, G., “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” Journal of Alloys and Compounds, Vol.293-295, pp.877-888, 1999.
Scaff, J.H., Schumacher, E.E., “Some Theoretical and Practical Aspects of Gases in Metals,” Bell System Technical Journal, Vol.12, pp.178-196, 1933.
Sieverts, A., “The Absorption of Gases by Metals,” Zeitschrift für Metallkunde, Vol.21, pp.37-36, 1929.
Souahlia, A., Dhaou, H., Askri, F., Mellouli, S., Jemni, A. and Nasrallah, SB., “Experimental study and characterization of metal hydride containers,” International Journal of Hydrogen Energy, Vol.36, pp.4952-4957, 2011.
Souahlia, A., Dhaou, H., Askri, F., Sofiene, M., Jemni, A. and Nasrallah, SB., “Experimental and comparative study of metal hydride hydrogen tanks,” International Journal of Hydrogen Energy, Vol.36, pp.12918-12922, 2011.
Stetson, Ned T., Marchio, M., Holland, A., Alper, D., Gorman, D., Yang, J., Vane Heat Transfer Structure, U.S. Pat., 6626323, 2003.
Troy, K. S., Southfield, S. V., Stetson, Ned T., Rangaswamy, K., Robust Metal Hydride Hydrogen Storage System, U.S. Pat., 5697221, 1997.
Visaria, M., Mudawar, I., “Experimental investigation and theoretical modeling of dehydriding process in high-pressure metal hydride hydrogen storage systems,” International Journal of Hydrogen Energy, Vol.37, pp.5735-5749, 2012.

Vucht, J.H.N., Kuijpers, F.A., Bruning, H.C.A.M., “Reversible Room-Temperature
Absorption of Large Quantities of Hydrogen by Intermetallic Compounds,” Philips Res. Repts., Vol.25, pp.133-140, 1970.
Wang, H., Prasad, A.K., Advani, S.G., “Hydrogen storage systems based on hydride materials with enhanced thermal conductivity,” International Journal of Hydrogen Energy, Vol.37, pp.290-298, 2012.
Züttel, A., “Materials for hydrogen storage,” Materials Today, Vol.6, pp.24-33, 2003.
CNS汽車用螺紋緊固件緊固扭矩,國家技術工業局標準,編號QC/T 518-1999。
JIS殼式和管式熱交換器,日本國家技術工業局標準,編號B8249,表4.10.3。
大西清(原著),洪榮哲、黃廷合(編譯),機械設計製圖便覽(修訂版),第四章15頁;第八章75-77頁;第十二章5頁,台北縣,台灣,全華圖書,2009。
王啟川,熱交換設計,第73-76頁,台北市,台灣,五南圖書,2007。
曲新生、陳發林,氫能技術,第27-31頁,台北市,台灣,五南書局,2006。
李方正,新能源,第22-23頁,台北縣,台灣,新文京開發出版社,2009。
李建國,壓力容器設計的力學基礎及其標準應用,第11頁,北京市,中國,機械工業出版社,2004。
吳朝宗、徐啓堂,具均勻氫氣釋放及有效熱交換結構之儲氫合金罐裝置,中華民國專利編號I223905,2004。
邱柏宇,金屬氫化物儲氫容器之設計製作與實驗分析,碩士論文,國立中央大學機械工程學系,桃園縣,台灣,2011。
依日光,熱管技術理論實務,第3-40頁,台南市,台灣,復漢出版社,1998。
胡子龍,儲氫材料,第45-46;51;83頁,台北市,台灣,曉園出版社,2006。
施志綱、黃先進、法漢‧白普丁,儲氫裝置,中華民國專利編號I267605,2006。
陳彥均,罐體設計對LaNi5儲氫合金膨脹變形之影響,碩士論文,國立中央大學機械工程學系,桃園縣,台灣,2010。
陳詠星,金屬氫化物氫壓縮機與高壓儲氫合金之研發與應用,碩士論文,國立中央大學機械工程學系,桃園縣,台灣,2009。
楊書文,金屬儲氫罐熱傳增強設計與實驗分析,碩士論文,國立中央大學機械工程學系,桃園縣,台灣,2011。
廖世傑,儲氫技術及應用簡介,工業材料,Vol.190,p.139,2002。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明