博碩士論文 100350606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.218.156.61
姓名 笛妮崔(Ditmara Cerrato Mairena)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 生質燃料〈麻瘋樹〉的能源平衡與環境生命週期評估: 在尼加拉瓜的案例研究
(Energy Balance and Environmental Life Cycle Assessment of Biofuel (Jatropha curcas L) in Nicaragua A Case of Study)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 筆記型電腦改良型自然對流散熱設計
★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究★ IP67防水平板電腦設計研究
★ 汽車多媒體導航裝置散熱最佳化研究★ 流動式顆粒床過濾器三維流場觀察及能性能測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在政策問題,如能源安全,農村發展和氣候變遷的背景下,全球生物燃料發展迅速擴大,許多國家政府看到生物燃料作為解決其政策推動的一種手段。尼加拉瓜的政府已經設定一個目標,希望平均使用約10%的生物乙醇和5%生物柴油,以達到在2020年減少15%於運輸部門之石油相關產品消耗量。尼加拉瓜亦通過政策,將痲瘋樹種子種植,作為適用於燃料運輸生物柴油之原料。
本論文採用國際標準化的生命週期評估(LCA)方法,ISO 14040-14044,評估生物柴油的能源消耗和環境的可持續性。採用專業LCA SimaPro軟體、Eco-indicator 99、IMPACT 2002、IPCC及CED當作影響評估方法,完成生命週期清單的制定,並評估完成兩種不同的種植系統。
摘要(英) In the context of policy concerns of energy security, rural development, and climate change, globally biofuel production is expanding rapidly; many governments see biofuels as a means of tackling interconnected these concerns in their policies. The Nicaraguan’s government has set up reduce 15% in the year 2020 the national consumption of petroleum derivatives in the transport sector, being biodiesel from Jatropha curcas Linnaeus (JCL) partial option for substitution of diesel fuel.
Conforming to the aforementioned, the research evaluates the energy balance and environmental sustainability of the biodiesel (JCL) by applying the internationally standardized life cycle assessment (LCA) methodology of ISO 14040-14044, accomplished through the elaboration of life cycle inventory and the assessment of the environmental impacts categories of two different cultivation systems using professional software of LCA SimaPro, adopting Eco-indicator 99, IMPACT 2002+, IPCC 2007 and CED as impacts assessment methods.
The results show that the production and the use of biodiesel (JCL) trigger non-renewable energy reduction of 63-97%, (Net Energy Gain, NEG =59.39 MJ) and (Net Energy Ratio, NER=4.28), GWPs saving of 40-73%, ozone layer depletion reduction of 87-99%, acidification and eutrophication reduction of 0.03-49.9%. However, there is increase in the land use of 960%in comparison with the reference system
The research found that biofuel (JCL) has better performance in terms of GWPs, ODP, acidification-eutrophication and energy efficiency, if the by-products are recycled efficiently; however, show negative environmental impacts to the ecosystem quality.
關鍵字(中) ★ 栽培種子
★ 油品提煉
★ 生物燃料
★ 影響評估
★ 排放
★ 生態系統品質
★ 資源枯竭
★ 柴油
關鍵字(英) ★ Seeds
★ Oil
★ Biofuel
★ Energy balance
★ Impacts assessment
★ Emissions
★ Land use
★ By-products
★ Diesel
★ Nicaragua
論文目次 Table of Contents
Abstract ....................................................................................................................................... i
Chinese Abstract ......................................................................................................................... ii
Acknowledgements ................................................................................................................... iii
Table of Contents ...................................................................................................................... iv
List of Tables ............................................................................................................................. vi
List of Figures ........................................................................................................................... vii
Acronyms and symbols ............................................................................................................. ix
Terminology ............................................................................................................................... x
Chapter 1 Introduction ................................................................................................................ 1
1.1. Background of the study .................................................................................................. 1
1.2. Problem statement ........................................................................................................... 2
1.3. Objectives of the study .................................................................................................... 2
1.4. Significance of the study ................................................................................................. 2
1.5. Site description ................................................................................................................ 3
Chapter 2 Literature review ........................................................................................................ 4
2.1. Classification of biofuel ................................................................................................... 4
2.2. Development status of biofuels ....................................................................................... 5
2.3. Biofuel in the World ........................................................................................................ 5
2.3.1. Biofuel in Latin America .......................................................................................... 6
2.3.2. Biofuel in Nicaragua ................................................................................................. 6
2.3.3. Biofuel in the study’s area ........................................................................................ 7
2.4. Botanical description of JCL ........................................................................................... 7
2.5. Production system of JCL biodiesel ................................................................................ 8
2.5.1. Agricultural cultivation system of JCL seeds ........................................................... 8
2.5.2. Oil extraction, refining and by-products system ...................................................... 9
2.5.3. JCL biodiesel and by-product system ..................................................................... 13
2.5.4. Use of JCL oil ......................................................................................................... 15
2.6. Life cycle assessment (LCA): state of the art ................................................................ 16
2.6.1. The goal and scope definition ................................................................................. 17
2.6.2. The life cycle inventory (LCI) ................................................................................ 20
2.6.3. The life cycle impact assessment (LCIA) .............................................................. 20
2.6.4. Uncertainty analysis ............................................................................................... 21
2.6.5. Interpretation .......................................................................................................... 21
Chapter 3 Methodology ............................................................................................................ 22
3.1. Goal and scope definition .............................................................................................. 22
3.1.1. Goal definition ........................................................................................................ 22
3.1.2. Functional unit (FU) ............................................................................................... 22
3.1.3. System boundaries .................................................................................................. 23
3.1.4. Scenarios simulation ............................................................................................... 24
3.1.5. Data quality ............................................................................................................ 28
3.1.6. Reference system .................................................................................................... 30
3.2. The life cycle inventory (LCI) methodology ................................................................. 30
v
3.2.1. Data collection ........................................................................................................ 30
3.2.2. Data treatment ........................................................................................................ 31
3.2.3. LCI agricultural cultivation system ........................................................................ 31
3.2.4. LCI oil extraction, refining and by products system .............................................. 36
3.2.5. LCI oil transesterification system ........................................................................... 40
3.2.6. LCI biofuel at filling station ................................................................................... 41
3.2.7. LCI exporting the oil .............................................................................................. 42
3.2.8. Oil end use .............................................................................................................. 42
3.2.9. Fossil diesel (reference system) .............................................................................. 44
3.3. The life cycle impact assessment (LCIA) ...................................................................... 45
3.3.1. Eco-indicator 99 method ........................................................................................ 46
3.3.2. The IMPACT 2002+ method .................................................................................. 52
3.3.3. IPCC 2007 GWP 100a method ............................................................................... 54
3.3.4. Cumulative Energy Demand (CED) ....................................................................... 55
3.3.5. Energy balance ....................................................................................................... 56
3.4. Monte Carlo uncertainty analysis .................................................................................. 56
3.5. Interpretation ................................................................................................................. 57
Chapter 4 Results ...................................................................................................................... 58
4.1. Life cycle inventory (LCI) results ................................................................................. 58
4.1.1. Agricultural cultivation system .............................................................................. 58
4.1.2. Oil extraction, refining and by products system ..................................................... 59
4.1.3. Oil transesterification system ................................................................................. 62
4.1.4. Biofuel at filling station .......................................................................................... 63
4.1.5. Exporting the oil ..................................................................................................... 63
4.1.6. Oil end use .............................................................................................................. 64
4.1.7. Fossil diesel (reference system) .............................................................................. 65
4.2. Life cycle impact assessment (LCIA) results ................................................................ 65
4.2.1. Eco-indicator 99 ..................................................................................................... 66
4.2.2. IMPACT 2002+ ...................................................................................................... 74
4.2.3. IPCC 2007 GWP 100a ............................................................................................ 82
4.2.4. Cumulative Energy Demand (CED) ....................................................................... 84
4.2.5. Energy Balance ....................................................................................................... 85
4.3. Monte Carlo uncertainty analysis results....................................................................... 88
Chapter 5 LCA interpretation ................................................................................................... 90
5.1. Methodology applied ..................................................................................................... 90
5.2. Impacts assessment interpretation ................................................................................. 94
5.3. Energy Balance interpretation ....................................................................................... 96
Chapter 6 Conclusions and Recommendation .......................................................................... 97
6.1. Conclusions ................................................................................................................... 97
6.2. Recommendation ........................................................................................................... 99
Chapter 7 Bibliography .......................................................................................................... 100
Appendix.A Machinery and Implements................................................................................ 105
Appendix.B Maps ................................................................................................................... 106
Appendix.C Exporting the oil ................................................................................................. 107
Appendix.D Impacts assessment tables .................................................................................. 108
參考文獻 [1] Achten , W., 2008. Sustainability evaluation of biodiesel from Jatropha curcas L: A life cycle oriented study, Leuven: PhD diss., Katholieke Universiteit.
[2] Achten, W. et al., 2010. Life cycle assessement of Jatropha biodiesel as transportation fuel in rural India. Applied Energy, Volume 87, pp. 3652-3660.
[3] Achten, W. et al., 2008. Jatropha bio-diesel production and use. Biomass and Energy, Volume 32, pp. 1063-1084.
[4] Adriaans, T., 2006. Suitablility of Solvent extraction for Jatropha curcas. Eindhoven: Fuels from Agriculture in Communal Technology Foundation (FACT- Foundation).
[5] Azurdia , C., Aturias Pullin, R., Barillas , E. & Montes , L., 2008. Informe de caracterización molecular de las variedades de Jatropha curcas L. en Guatemala con fines de mejoramiento, Guatemala: CONCYT, MAGA, OCTAGON, S.A & AGEXPORT (available in Spanish).
[6] Bártoli, J., 2008. Physic nut (Jatropha curcas) Cultivation in Honduras Handbook, Lima: Honduran Foundation for Agricultural Research (FHIA) & Green drop project.
[7] Boyle, G., 2009. Renewable Energy A Power for a Sustainable Future. 2nd ed. Oxford: Oxford University Press.
[8] Chaudhary, D. et al., 2007. Changes in soil characteristics and foliage nutrient content in Jatropha curcas plantation in relation to stand density in Indian waste land. Gujarat, Fuels from Agriculture in Communal Technology Foundation (FACT- Foundation) Seminar on Jatropha curcas L agronomy.
[9] Cherubini, F. et al., 2009. Energy-and greenhouse gas-based LCA of biofules and bioenergy systems: Key issues, ranges and recommendations. Resources, Conversion and Recycling, Volume 53, pp. 434-447.
[10] Coca Palacios, L., 2012. Sistematization de la Produción de Aceite Vegetal Combustible en sustitución del diesel basado en el cultivo del Jatropha curcas L (Tempate), León: Proyecto de aceite vegetal combustible (available in Spanish).
[11] Contran , N. et al., 2013. State of the art of Jatropha curcas productive chain: From sowing to biodiesel and by-products. Industrial crops and products, Volume 42, pp. 202-215.
[12] Demirbas, A., 2009. Securing the Planet’s Future Energy Needs. Trabzon: Springer-Verlag .
[13] Easterlund, P., 2000. TractorData, Minnesota: TractorData LLC.
101
[14] ECLAC, 2008. Biocombustibles líquidos para transporte en América Latina y el Caribe. Santiago de Chile: Economic Commission for Latin America and the Caribbean United Nations.
[15] EEA, 1995. The CORINE Land Cover (CLC) nomenclature, Copenhagen: Environmental European Agency.
[16] EEA, 1997. Life Cycle Assessment (LCA) A guide to approaches, experiences and information sources, Copenhagen: European Environment Agency.
[17] EIA, 2009. International Energy Outlook. Office of Integrated Analysis and Forecasting ed. Washington, DC: Energy Information Administration (EIA).
[18] Erazo Lopez, J. D., 2010. Manual Técnico del Cultivo de Tempate (Jatropha curcas) en El Salvador, San Salvador: Centro Nacional de Tecnología Agropecuaria y Forestal (CENTA)(available in Spanish).
[19] FACT, 2010. The Jatropha handbook (From cultivation to Application). Eindhoven: FACT Foundation.
[20] Feto, A., 2011. Energy greenhouse gas and economic assessment of biodiesel production from Jatropha, Haramaya: Master’s thesis .
[21] Foild, N. et al., 1996. Jatropha curcas L as a source for the production of Biofuel in Nicaragua. Bioresource Technology, Volume 58, pp. 77-82.
[22] Frieschknecht , R. et al., 2007. Overview and Methodology.ecoinvent report No. 1., Dübendort: Swiss Centre for Life Cycle Inventories.
[23] Germain Lefèvre, A. & Ramírez Miguel, H., 2010. Oportunidades y Amenazas de los Biocombustibles en Centroamérica-El Salvador, Nicaragua, Honduras, Guatemala y Costa Rica. San Salvador: Fundación para el Desarrollo (FUNDE)(available in Spanish).
[24] Gmünder, S. et al., 2012. Environmental Impacts of Jatropha curcas Biodiesel in India. Biomedicine and Biotechnology, Volume 2012, pp. 1-10.
[25] Gnansounou, E. & Dauriat, A., 2011. Life-Cycle Assessement of Biofuels. In: Biofuels: Alternative Feedstocks and Conversion Processes. Lausanne: Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), ENERS Energy Concept, p. 25.
[26] Goedkoop , M. et al., 2010. SimaPro 7 Tutorial. Amersfoort: Product ecology consultants PRé Consultants.
[27] Goedkoop, M. & Spriensma, R., 2001. The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessement, Amersfoort: National Institute of Public Health and the Environment RIVM, Swiss scientifics, Swiss Agency for the Environmental, Forest and Landscape BUWAL.
[28] Gomes Dias, A., 2009. Generic life cycle assessement of Jatropha biodiesel system, Lisboa: Master’s thesis Universidade Nova, Katholieke Universiteit Leuven.
102
[29] Gour , V. K., 2004-2013. Production practices including post-harvest management of Jatropha curcas, Jabalpur: Department of Plant Breeding & Genetics, Centre for Jatropha Promotion Agricultural University, Krishinagar.
[30] Guinée, J. B. et al., 2001. Life cycle assessment: An Operational guide to the ISO standards, Lieden: Leinden University.
[31] Gürzenich, D., Mathur , J., Kumar Bansal , K. & Wagner , H.-J., 1999. State of the Art of Cumulative Energy Demand for Selected Renewable Energy Technologies. Int. J. LCA, Volume 4, pp. 143-149.
[32] Heijungs, R. et al., 2001. Towards a life cycle impact assessment method which compromises category indicators at the midpoint and the endpoint level, Amsterdam: National Institute of Public Health and the Environment (RIVM) and the Center of Environmental Science of Leiden University (CML), PRé Consults.
[33] Heller , J., 1996. Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and negleted crops. Italy: PhD.diss., Institute of Plant Genetics and Crop Plant Research/International Plan Genetic Resources Institute.
[34] Henning , R., 2000. The Jatropha Booklet : A Guide to the Jatropha System and its Dissemination in Africa. Weissensberg: Bagani GbR Consulting für Integrierte Ländliche Entwicklungmultimedia Präsentation.
[35] Hischier, R. et al., 2010. Implementation of Life Cycle Impact Assessemnt Methods. ecoinvent report No.3, v2.2., Dübendorf: Swiss Centre for Life Cycle Inventories.
[36] Houghton, M., 2005. The American Heritage Science Dictionary, Pennsylvania: Houghton Mifflin Company.
[37] Huijbregts , M. A. et al., 2006. Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products?. Environ.Sci Technol., Volume 40, pp. 641-648.
[38] IPCC, 2001. Third Assessment Report Climate Change 2001: The Scientific Basis. Working Group I of the Intergovernmental Panel on Climate Change (IPCC) ed. Arendal: GRID-Arendal.
[39] IPCC, 2007. Climate Change 2007. Mitigation Contribution of Working Group III to the Fourth Assessment Panel on Climate Change. In: B. Metz, O. Davidson, R. Dave & L. A Meyer, eds. Cambrigde: Cambridge University Press, p. 841.
[40] ISO, 2006. Environmental management - Life cycle assessement - Principles and framework. International Standards Organization ed. Geneva: ISO Office.
[41] Janulis , P., 2003. Reduction of energy consumption in biodiesel fuel life cycle. Renewable Energy, Volume 29, pp. 861-871.
[42] Jolliet , O. et al., 2003. IMPACT 2002+ : A New Life Cycle Impact Assessment Methodology. Int J LCA, Volume 8, pp. 324-330.
103
[43] MEM, 2007. Informe de logros del Ministerio de Energía y Minas (2007-2010). Managua: Ministry of Mines and Energy (available in Spanish).
[44] MEM & SNV, 2010. Diagnóstico sobre las potencialidades y restricciones biofísicas, sociales, institucionales y económicas para el desarrollo de los biocombustibles en Nicaragua. 1st ed. Managua: Ministerio de Energías y Minas (available in Spanish).
[45] Prueksakorn , K., Gheewala , S. H., Pomthong, M. & Bonnet, S., 2010. Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energy for Sustainable Developement, Volume 14, pp. 1-5.
[46] Prueksakorn, K. & Gheewala , S. H., 2006. Energy and Greenhouse Gas Implications of Biodiesel Production from Jatropha curcas L. Bangkok, King Mongkut’s University of Technology Thoburi Bangkot, Thailand.
[47] Prueksakorn, K. & Gheewala, S. H., 2008. Full Chain Energy Analysis of Biodiesel from Jatropha curcas L in Thailand. Environ.Sci.Technol., Volume 42, pp. 3388-3393.
[48] Sébastien , H., Jolliet, O. & Margni, M., 2005. IMPACT 2002+ User Guide v.2.0 & 2.1. Lausanne: The IMPACT Modelling Team.
[49] Sidibe, S., Blin , J., Vaitilingom , G. & Azoumah, Y., 2010. Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review. Renewable and Sustainable Energy Reviews, Volume 14, pp. 2748-2759.
[50] Sims, B., 2011. Solid Growth in Central, South America. Biodiesel Magazine, 16 August, p. 1.
[51] Singh Nigam , P. & Singh , A., 2011. Production of liquid biofuel from renewable resources. Progress in Energy and combustion science, Volume 37, pp. 52-68.
[52] Sotolongo , A. J. et al., 2001. Potencialidades energéticas y medioambientales del árbol Jatropha curcas L en las condiciones edafoclimáticas de la región semiárida de la provincia de Guantánamo, Guantánamo, Cuba: Centro de Aplicaciones Tecnológicas para el Desarrollo Sostenible (CATEDES-CITMA), Facultad de Ingeniería Química, Universidad de Oriente (available in Spanish).
[53] Srivastava , P. et al., 2011. Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation site. Biomass and Bioenergy, Volume 35, pp. 3936-3942.
[54] Staubmann, R. et al., 1997. Biogas Production from Jatropha curcas Press Cake. Applied Biochemestry and Biotechnology, Volume 63, pp. 457-467.
[55] Strååt, Christian, 2003. Pocedure for Environmental ranking of material for selection purpuse., Stockholm: KTH Royal Institute of Technology,
[56] Stuttgart, D., 2007. Screening Life Cycle Assessment of Jatropha Biodiesel, Heidelberg: IFEU-Institute for Energy and Environmental Research.
104
[57] UNEP/GRID-Arendal, 2011. Biofuels Vital Graphics Powering a Green Economy. Paris: Division of Technology, Industry and Economics (DTIE) and GRID-Arendal of United Nations Environment Programme (UNEP).
[58] UNEP, 2009. Towards sustainable production and use of resources: Assesing Biofuels. 1st ed. Paris: United Nations Environment Programme.
[59] UNFCCC, 2012. Kyoto Protocol agreement, Bonn: United Nations Framework Convention on Climate Change.
[60] van der Veen, L., 2008. Biofuels in Nicaragua, Managua: Embassy of the Kingdom of Netherlands.
[61] van Peer, A., 2010. Growing Jatropha. Frederiksoord, Netherlands: van Peer, Ab.
[62] Wang, Z., Calderon , M. M. & Lu , Y., 2011. Lifecycle assessment of economic, environmental and energy performance of Jatropha curcas L.biodiesel in China. Biomass and Bioenergy, Volume 35, pp. 2893-2902.
[63] Wikipedia, 2012. Free Encyclopedia. [Online] Available at: http://en.wikipedia.org/wiki/Polyethylene [Accessed 2012].
[64] Yun-Duo , L., Fanf , Z., Tong-Chao , S. & Yang , Q., 2013. Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Applied Energy, pp. In Press, Corrected Proof — Note to users.
Web resources
Kia Motors Corporation: www.kia.co.uk (accessed: February 2013) Sea Rates network: www.searates.com (accessed: March 2013)
Car emissions: www.car-emissions.com (accessed: December 2012)
Integrated Publishing, Inc: www.alternativefuels5.tpub.com (accessed: January 2012)
US Energy information administration EIA: www.eia.gov (accessed: December 2012)
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明