博碩士論文 945403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.118.255.51
姓名 葛少臣(Shaoh-chen Ke)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 無線行動網路排程與資源分配之研究
(Effective Scheduling and Resource Allocation Schemes for Emerging Wireless Mobile Networks)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 要設計一套優質的無線行動網路系統,排程和資源分配的技術扮演著重要的角色。然而,由於行動用戶服務的多元化,不同類型的服務對網路品質有著不同要求,加上無線網路環境的多變性,使得排程和資源分配變得更具挑戰性。
本論文首先探討以排程技術實現行動裝置省電的議題。為了讓使用電池為電源的行動裝置有更長的續航力,它的省電能力是非常關鍵的特性。因此,我們提出了兩種以節省用戶行動裝置電能為中心的排程機制「全部重排和部分重排」演算法,它們係針對即時連線與非即時連線分別提供滿足其必須的品質服務(恰恰滿足的概念),以達到有效節用電源並確保用戶服務品質的目的。模擬結果顯示:全部重排與傳統的方法比即時連線裝置的平均睡眠效率高8%,而比非即時連線裝置高11%,部分重排則對非即時連線裝置有比較好的省電表現,其睡眠效率比傳統方法高7.59%,而且兩種機制都滿足 QoS 的需求。。
其次,研究在可調性視訊群播環境下排程與資源分配的機制。我們的機制將服務群播群組(接收相同視訊節目服務者)分成數個遞送群播群組,且以「軟性分群」的概念來設計遞送群播群組,讓群組的分配更具彈性。並以此概念為基礎提出「跨層」及「品質感知」等兩種資源分配機制。「跨層」機制確實以頻域(實體層)與時域(MAC層)二維的角度去分配資源,由模擬結果顯示:「跨層」機制與我們之前所做研究「最佳用戶優先」方法相比,平均吞吐量為520 kbps優於445 kbps;「品質感知」機制以適應性的方式同時調整使用SVC的影像品質可調性、MCS的頻譜分配彈性以及UL-FEC的糾錯能力等特性,以達到資源有效分配的目的。模擬結果顯示:「品質感知」機制可獲得最高的傳輸效率為70% (傳輸效率定義為相對於系統使用最高MCS傳送速率之比值),且同時滿足用戶真正要求的視訊品質。
最後,討論SC-FDMA LTE網路上行資源分配的演算法。我們提出的演算法將資源分配的程序分成匹配演算法和無線電資源分配演算法,以獲得較好的服務品質滿意度與系統產出量。在匹配部分,以通道狀況、頻寬分配的連續性及服務品質為考量,並採用Gale-Shapley演算法,找出RB(resource block)與UE(user equipment)的最佳匹配;在無線電資源分配方面則用前面找出的最佳匹配對為分配起點,考慮不同用戶的QoS要求,並在RB分配必須為連續的條件下,以啟發式演算法來分配UE的頻寬。模擬分析顯示:我們所提經過匹配的資源分配機制,其最小頻寬需求不滿足率平均而言小於傳統未經匹配的方法10%左右,確實提高了資源分配的效率。
摘要(英) Scheduling and resource allocation play important roles in designing effective wireless mobile networks. However, with diverse requirements of quality of service for mobile devices applications plus changing wireless enviroments, scheduling and resource allocation issues become more challenging. In this dissertation, we first investigate power saving scheduling and then resource allocation for multicasting scalable video coding (SVC) traffic in WiMAX network. Finally, resource allocation technique for uplink localized SC-FDMA LTE network is discussed.
To support battery-operated devices for longer use durations without recharging, power saving capability becomes a vital feature. Accordingly, we propose an energy-saving centric downlink scheduling (ESC-DS) scheme in WiMAX network. The proposed scheme treated real-time and non-real-time connections differently with respect to providing “just enough QoS” to support efficient power utilization and to satisfy the QoS requirements. Two rescheduling algorithms, whole–reschedule and partial-reschedule, are proposed and analyzed. Our simulation results indicated the whole-reschedule scheme exhibited 8 % higher sleep efficiency than the traditional scheme for RT MSs and higher than 11 % for NRT MSs while the partial-reschedule scheme obtained a minor 0.95% higher sleep efficiency than the traditional scheme for RT MSs and excellent 7.59% higher for NRT MSs.
For SVC multicasting scheduling and resource allocation, we treat a service multicast group, which receives the same video traffic simultaneously, can be divided into several delivery multicast groups in WiMAX network for better radio resource utilization. A delivery multicast group is designed in a “soft-group” manner, which can be flexibly arranged. Two radio resource allocation schemes, cross-layer resource allocation (CLRA) and quality-aware resource allocation (QARA), are presented. CLRA considers not only frequency domain (PHY layer) but also time domain (MAC layer) to obtain better resource allocation. Simulation results show that the average throughput per user of CLRA is 520 kbps better than 445 kbps of our previous presented BUF (best user first) scheme. QARA jointly uses SVC scalability, MCS flexibility, and UL-FEC capability to adaptively allocate radio resources for a video stream. Simulation results show that the proposed QARA scheme (with FEC) achieves the highest transmission efficiency 70% (transmission efficiency is defined as the ratio of average received data rate per slot using the selected MCS level to that of using the highest MCS level (i.e., MCS 6) for transmitting video data).
For uplink resource allocation in localized SC-FDMA LTE network, we propose a systematic approach, dividing resource block (RB) allocation process into matching algorithm and assignment algorithm, to achieve better QoS satisfacation and system throughput. The Gale-Shapley algorithm is applied to find the optimal matching between RBs and user equipments (UE) by considering channel conditions and the desired quality of service (QoS), and the resource assignment algorithm heuristically allocates bandwidth to UE by referring the matched RB under the constraint of carrier continuity. From the simulation analysis, it indicates that has the unsatisfied ratio (the percentage that the allocated bandwidth is less than the GBR minimum bit rate) of the proposed matching scheme is 10% less than that of the no-matching scheme on average.
關鍵字(中) ★ 睡眠模式
★ 排程
★ 節能
★ 全球互通微波存取
★ 群播
★ 可調性影像編碼
★ 單載波分頻多工存取
★ Gale-Shapley演算法
★ 無線電資源分配
關鍵字(英) ★ sleep mode
★ scheduling
★ energy saving
★ WiMAX
★ multicast
★ SVC
★ SC-FDMA
★ Gale-Shapely algorithm
★ radio resource allocation
論文目次 ABSTRACT............................................................................................................................ iii
ACKNOWLEDGEMENTS…………………………………………………………............ v
Table of Contents ................................................................................................................... vi
List of Figures........................................................................................................................ viii
List of Tables ......................................................................................................................... ..x
Chapter 1. Introduction......................................................................................................... 1
1.1 Motivations................................................................ ......................................................... 1
1.2 Scope of the Work............................................................................................................... 2
1.3 Organization of the Dissertation.......................................................................................... 2
Chapter 2. Related Works..................................................................................................... 4
2.1 Power Saving Scheduling in WiMAX................................................................................. 4
2.2 Multicast Scheduling and Resource Allocation in WiMAX…………………………….... 6
2.3 Resource Allocation in Uplink LTE……………………………………………………… 8
Chapter 3. An Energy-Saving Centric Downlink Scheduling Scheme for WiMAX Networks ................................................................................................................................ 10
3.1 Background........................................................................................................................ 10
3.2 The Proposed ESC-DS Scheme……................................................................................. 11
3.3 Performance Simulation.................................................................................................... .23
3.4 Summary………………………………………………………………………..……...... 39
Chapter 4. Resource Allocation for Multicasting SVC Traffic in OFDMA Systems................................................................................................................................... 40
4.1 Background……………………………………………………………………………… 41
4.2 Problem Statement ............................................................................................................ 42
4.3 The Proposed Algorithm ................................................................................................... 44
4.4 Experimental Simulations……………………………………………………………….. 58
4.5 Summary………………………………………………………………………………… 66
Chapter 5. Uplink Radio Resource Allocation for Localized SC-FDMA LTE Network.................................................................................................................................. 67
5.1 Background ...................................................................................................................... 67
5.2 The Proposed Gale Shapley based Allocation Scheme…………..................................... 71
5.3 Experimental Simulations................................................................................................. 80
5.4 Summary............................................................................................................................ 89
Chapter 6. Conclusions and Future Works........................................................................ 91
List of Abbreviations ……………………………………………………....….………….. 93
Bibliography .......................................................................................................................... 94
List of Publications.............................................................................................................. 103
參考文獻 [1] [Online]. Available: http://grouper.ieee.org/groups/802/16/
[2] [Online]. Available:http://www.wimaxforum.org/
[3] [Online]. Available:http://www.3gpp.org/LTE
[4] D. Pareit, B. Lannoo, I. Moerman, P. Demeester, “The history of WiMAX: A complete survey of the evolution in certification and standardization for IEEE 802.16 and WiMAX,” IEEE Commun. Surveys Tutorials., vol. 14, no. 4, pp. 1183–1211, Oct. 2012.
[5] B. Li, Y. Qin, C. P. Low, and C. L. Gwee, “A survey on mobile WiMAX,” IEEE Commun. Mag., vol. 45, no. 12, pp. 70–75, Dec. 2007.
[6] I. Papapanagiotou, D. Toumpakaris, J. Lee, M. Devetsikiotis, “A survey on next generation mobile WiMAX networks: objectives, features and technical challenges.”, IEEE Commun. Surveys Tutorials, vol. 11, no. 4, pp. 3–18, Dec. 2009.
[7] K. Etemad, “Overview of mobile WiMAX technology and evolution,” IEEE Commun. Mag., vol. 46, no. 10, pp. 31–40, Oct. 2008.
[8] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX, Prentice-Hall, 2007.
[9] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access, John Wiley & Sons, 2007.
[10] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution: From Theory to Practice, John Wiley & Sons, 2009.
[11] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTE-Advanced for Mobile Broadband, Academic Press, Apr. 2011.
[12] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications, John Wiley & Sons, 2012.
[13] S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt, and K. Zangi, “LTE-advanced – evolving LTE towards IMT-advanced,” in Proc. IEEE 68th Vehicular Technology Conference, (VTC’08-Fall), pp. 1–5, Sept. 2008.
[14] S. Parkvall, A. Furuskar, and E. Dahlman, “Evolution of LTE toward IMT-Advanced,” IEEE Commun. Mag., vol. 49, pp. 84–91, Feb. 2011.
[15] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-Advanced: next-Generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, no. 3, pp. 10–22, June 2010.
[16] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, “LTE: the evolution of mobile broadband,” IEEE Commun. Mag., vol. 47, no. 4, pp. 44–51, Apr. 2009.
[17] S. Abeta, "Toward LTE commercial launch and future plan for LTE enhancements (LTE-Advanced)," in Proc. IEEE Int. Conf. Commun. Syst. (ICCS’10), pp. 146–150, Nov. 2010.
[18] S. Srikanth, P. A. Murugesa Pandian, and X. Fernando, "Orthogonal frequency division multiple access in WiMAX and LTE: a comparison", IEEE Commun. Mag., vol. 50, no. 5, pp. 153–161, Sept. 2012.
[19] M. Jamal, B. Horia, K. Maria, and I. Alexandru, “Study of Multiple Access Schemes in 3GPP LTE OFDMA vs. SC-FDMA”, in Proc. IEEE Int. Conf. Applied Electronics AE’11, pp. 1–4, Sept. 2011.
[20] H. Holma and A. Toskala, LTE for UMTS: OFDMA and SC-FDMA Based Radio Access, Wiley, 2009.
[21] R.-H. Liou, Y.-B. Lin, and S.-C. Tsai, “An investigation on LTE mobility management,” IEEE Trans. Mobile Computing, vol. 12, no. 1, pp. 166–176, Jan. 2013.
[22] S. K. Ray, K. Pawlikowski, and H. Sirisena, “Handover in mobile WiMAX networks: the state of art and research issues,” IEEE Commun. Surveys Tutorials, vol. 12, no.3, pp. 376–399, Apr. 2010.
[23] R. Y. Kim, I. Jung, X. Yang, and C.-C. Chou, “Advanced handover schemes in IMT-advanced systems,” IEEE Commun. Mag., vol. 48, no. 8, pp. 78–85, Aug. 2010.
[24] S. Fernandes, A. Karmouch, “Vertical mobility management architectures in wireless networks: a comprehensive survey and future directions,” IEEE Commun. Surveys Tutorials, vol. 14, no.1, pp.1–19, Feb. 2012.
[25] S. Sim; S.-J Han, J.-S. Park, S.-C. Lee, “Seamless IP mobility support for flat architecture mobile WiMAX networks,” IEEE Commun. Mag., vol. 47, no. 6, pp.142–148, June 2009.
[26] S.-C. Ke, Y.-W. Chen, and S.-Y. Hsu, “A performance comparison of inter-ASN handover management schemes over mobile WiMAX network,” International Journal of Wireless Communications and Networking, pp. 75–85, June 2009.
[27] S. Ahson and M. Ilyas, WiMAX: Standards and Security, CRC Press, 2008.
[28] C.-T. Huang and J.-M. Chang, “Responding to security issues in WiMAX networks”, IEEE Comp. Society IT Professional Mag., vol. 10, no.5, pp. 15–21, 2008.
[29] L. Maccari, M. Paoli, and R. Fantacci, “Security analysis of IEEE 802.16”, in Proc. IEEE Int. Conf. Commun.( ICC ’07), pp. 1160–1165, June 2007.
[30] P. Rengaraju, L. Chung-Horng, Q. Yi, and A. Srinivasan, “Analysis on mobile WiMAX security”, in Proc. IEEE Int. Conf. Science and Tech. for Humanity (TIC-STH’09), pp. 439–444, Sept. 2009.
[31] C. B. Sankaran, “Network access security in next generation 3GPP systems: A tutorial”, IEEE Commun. Mag., pp. 84–91, Feb. 2009.
[32] N. Seddigh, B. Nandy, R. Makkar, and J. F. Beaumont, “Security advances and challenges in 4G wireless networks,” in IEEE Eighth Annual Int. Conf. Privacy Security and Trust (PST’10), pp. 62–71, Aug. 2010.
[33] L. Gu and M. A. Gregory, “A green and secure authentication for the 4th generation mobile network,” in Proc. IEEE Australasian Telecommun. Networks and Applications Conf. (ATNAC’11), pp.1–7, Nov. 2011.
[34] C. Vintila, V. Patriciu, and I. Bica, “Security analysis of LTE access network”, in Proc. 10th Int. Conf. Networks (ICN’11), pp. 29–34, Jan. 2011.
[35] S.-C. Ke, I.-H. Peng, Y.-W. Chen, and T.-S. Yeh, “A simplified ASN anchored mobility scheme over mobile WiMAX,” First Asian Himalayas Int. Conf. on Internet (AH-ICI’09), pp. 1–4, Nov. 2009.
[36] M. Tsai, J. Sung, and Y. Huang, “Resource management to increase connection capacity of real-time streaming in mobile WiMAX,” IET Commun., vol. 4, no. 9, pp.1108–1115, June 2010.
[37] K. Zheng, F. Hu, W. Wang, W. Xiang, and M. Dohler, “Radio resource allocation in LTE-advanced cellular networks with M2M communications,” IEEE Commun. Mag., vol. 50, no. 7, pp. 184–192, July 2012.
[38] W. Chung, C. Chang, and L. Wang, “An intelligent priority resource allocation scheme for LTE-A downlink systems, ” IEEE Wireless Commun. Letters, vol. 1, no. 3, pp. 241–244, June 2012.
[39] J. Fan, Q. Yin, G. Y. Li, B. Peng, X. Zhu, “Joint user pairing and resource allocation for uplink SC-FDMA systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’11), pp. 1–5, 2011.
[40] M. Moretti, A. Todini, A. Baiocchi, and G. Dainelli, “A layered architecture for fair resource allocation in multicellular multicarrier systems,” IEEE Trans. Vehic. Tech., vol. 60, no. 4, pp.1788–1798, May 2011.
[41] “ITU paves way for next-generation 4G mobile technologies”, Oct. 2010, [Online]. Available: http://www.itu.int/net/pressoffice/press_releases /2010/40.aspx.
[42] M. Alasti, B. Neekzad, C. Jie Hui, and R. Vannithamby, “Quality of service in WiMAX and LTE networks,” IEEE Commun. Mag., vol. 48, no. 5, pp. 104–111, May 2010.
[43] C. So-In, R. Jain, and A.-K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 156–171, Feb. 2009.
[44] Y. Xiao, “Energy saving mechanism in the IEEE 802.16e wireless man,” IEEE Commun. Lett., vol. 9, no. 7, pp. 595–597, July 2005.
[45] Y. Zhang, and M. Fujise, “Energy management in the IEEE 802.16e MAC,” IEEE Commun. Lett., vol. 10, no. 4, pp. 311–313, Apr. 2006.
[46] J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee, and C.-H. Cho, “Performance analysis of sleep mode operation in IEEE 802.16e,” in Proc. IEEE 60th Vehicular Technology Conf. (VTC ’04), vol. 3, pp. 1169–1173, Sept. 2004.
[47] K. Han, and S. Choi, “Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems,”in Proc. IEEE 63rd Vehicular Technology Conf. (VTC’06-Spring), pp. 1141–1145, May 2006.
[48] Y. Zhang, Y. Xiao, and V. C. M. Leung, “Energy management analysis and enhancement in the IEEE 802.16e wireless MAN,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3738–3752, Sept. 2009.
[49] J. Lee, and D. Cho, “An optimal power-saving class II for VoIP traffic and its performance evaluations in IEEE 802.16e,” Comput. Commun., vol. 31, no. 14, pp. 3204–3208, Sept. 2008.
[50] T.-C. Chen, J.-C. Chen, and Y.-Y. Chen, “Maximizing unavailability interval for energy saving in IEEE 802.16e wireless MANs,” IEEE Trans. Mobile Computing, vol. 8, no. 4, pp. 475–487, Apr. 2009.
[51] L. Kong, and D.H. Tsang, “Performance study of power saving classes of types I and II in IEEE 802.16e,” in Proc. IEEE 31st Local Computer Networks Conf. (LCN ’06), pp. 20–27, Nov. 2006.
[52] J. L. Shi, G. F. Fang, Y. Sun, G. H. Zhou, Z. C. Li, and E. Dutkiewicz, “WLC17-5: Improving mobile station energy efficiency in IEEE 802.16e WMAN by burst scheduling,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’06), pp. 1–5, Nov. 2006.
[53] S.-C. Huang, C. Chen, R.-H. Jan, and C.-C. Hsieh, “Energy efficient scheduling with QoS guarantee for IEEE 802.16e broadband wireless access networks,” in Proc. IEEE Int. Wireless Communications and Mobile Computing Conf. (IWCMC 2007), pp. 547–552, Aug. 2007.
[54] S.-L. Tsao, and Y.-L. Chen, “Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system,” Compt. Commun., vol. 31, no. 10, pp. 2350–2359, June 2008.
[55] S.-R. Yang, and C.-C. Kao, “An energy-efficient scheduling algorithm for IEEE 802.16e broadband wireless access systems,” in Proc. ACM Int. Wireless Commun. and Mobile Computing Conf. (IWCMC’09), pp. 532–536, 2009.
[56] H. L. Tseng, Y.P. Hsu, C. H. Hsu, P. H. Tseng, and K. T. Feng, “A maximal power-conserving scheduling algorithm for broadband wireless networks,” in Proc. IEEE Wireless Commun. and Networking Conf. ( WCNC’08), pp. 1877–1882, Mar. 2008.
[57] J.-J. Chen, J.-M. Liang, and Y.-C. Tseng, “An energy efficient sleep scheduling considering QoS diversity for IEEE 802.16e wireless networks,” in Proc. IEEE Commun. Conf. (ICC’10), pp. 1–5, May 2010.
[58] A. M. Baker, C. K. Ng, N. K. Noordin, A. Mustafa, and A. Akbari, “An optimized energy saving mechanism in IEEE 802.16e mobile WiMAX systems,” Journal of High Speed Networks, vol. 17, no. 3, pp. 147–161, Jan. 2010.
[59] J. Zhang, and N. Ansari, “A simple sleep control scheme based on traffic monitoring and inference for ieee 802.16e/m systems,” in Proc. IEEE Wireless Commun. and Networking Conf. ( WCNC’12), pp. 2504–2508, Apr. 2012.
[60] S. Baek, and B.D. Choi, “Performance analysis of sleep mode operation in IEEE 802.16m with both uplink and downlink packet arrivals,” in Proc. IEEE Computer Aided Modeling and Design of Commun. Links and Networks (CAMAD’11) , pp. 112–116, June 2011.
[61] J.-Y. Chang, and Y.-C. Lin, “Dynamically alternating power saving scheme for IEEE 802.16e mobile broadband wireless access systems,” J. Commun. Networks, vol.14, no. 2, pp.179–187, Apr. 2012.
[62] S. Baek, and B. D. Choi, “Analysis of discontinuous reception (DRX) with both downlink and uplink packet arrivals in 3GPP LTE,” in Proc. ACM 6th Int. Queueing Theory and Network Applications Conf. (QTNA’11), pp. 8-16, 2011.
[63] J.-M. Liang, J.-J. Chen,, H.-H. Cheng, and Y.-C. Tseng, “An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-Advanced networks for internet of things”, IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 13–22, Mar. 2013.
[64] S. Jin, and D. Qiao, “Numerical analysis of the power saving in 3GPP LTE advanced wireless networks,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1779–1785, May 2012.
[65] K.-C. Ting, H.-C.Wang, C.-C. Tseng, and F.-C. Kuo, “Energy-efficient DRX scheduling for QoS traffic in LTE networks,” in IEEE Int. Symp. Parallel Distributed Process (ISPA’11), pp. 213–218, Apr. 2011.
[66] B. Huang, H. Tian, L. Chen, and J. Zhu, “DRX-aware scheduling method for delay-sensitive traffic,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1113–1115, Dec. 2010.
[67] E. Liu, J. Zhang, and W. Ren, “Adaptive DRX scheme for beyond 3G mobile handsets,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM ’11), pp. 1–5, Dec. 2011.
[68] S. Gao, H. Tian, J. Zhu, and L. Chen, “A more power-efficient adaptive discontinuous reception mechanism in LTE,” in Proc. IEEE Veh. Technol. Conf. (VTC’11), pp. 1–5, Sept. 2011.
[69] O. Oyman, J. Foerster, T. Yong-joo, and L. Seong-Choon, “Toward enhanced mobile video services over WiMAX and LTE,” IEEE Commun. Mag., vol. 48, no. 8, pp. 68–76, Aug. 2010.
[70] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard”, IEEE Trans. Circuits and Systems for Video Technol., vol. 17, no. 9, pp. 1103–1120, Sept. 2007.
[71] ETSI TR 102 993 V1.1.1, Digital Video Broadcasting (DVB); Upper Layer FEC for DVB Systems, Feb. 2011.
[72] P802.16Rev2/D8, DRAFT Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems, Dec. 2008.
[73] J. She, F. Hou, P. H. Ho, and L. L. Xie, “IPTV over WiMAX: key success factors, challenges, and solutions,” IEEE Commun. Mag., vol. 45, no. 8, pp. 87–93, Aug. 2007.
[74] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, “Internet protocol television (IPTV): the killer application for the next-generation internet,” IEEE Commun. Mag., vol. 45, no. 11, pp. 126–134, Nov. 2007.
[75] H.-H. Juan, H.-C. Huang, C. Huang, and T. Chiang, “Scalable video streaming over mobile WiMAX,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’07), pp. 3463–3466, May 2007.
[76] K. Etemad, and L. Wang, “Multicast and broadcast multimedia services in mobile WiMAX networks,” IEEE Commun. Mag., vol. 47, no.10, pp. 84–91, Oct. 2009.
[77] W. H. Kuo, T. Liu, and W. Laio, “Utility-based resource allocation for layer-encoded IPTV multicast in IEEE 802.16 (WiMAX) wireless networks,” IEEE Int. Commun. Conf. (ICC’07), pp. 1754–1759, June 2007.
[78] R. G. Cheng, W. J. Wang, and C. L. Chu, “Dynamic rate adjustment (DRA) algorithm for WiMAX systems supporting multicast video services,” in Proc. ACM Int. Embedded Ubiquitous Computing Conf. (EUC’07), pp. 379–388, 2007.
[79] H. Y. Chi, C. W. Lin, Y. C. Chen, and C. M. Chen, “Optimal rate allocation for scalable video multicast over WiMAX,” in Proc. IEEE Int. Symp. Circuits and Systems, (ISCAS’08), pp. 1838–1841, May 2008.
[80] C. W. Huang, P. H. Wu, S. J. Lin, and J. N. Hwang, “Layered video resource allocation in mobile WiMAX using opportunistic multicasting,” in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC’09), pp. 1–6, Apr. 2009.
[81] Y. W. Chen, Y. Y. Chu, and Y. B. Yu, “A hybrid uplink traffic scheduling in IEEE 802.16 network,” in Proc. IEEE 7th VTS Asia-Pacific Wireless and Commun. Conf. (APWCS-VTS’10), May 2010.
[82] S. Sharangi, R. Krishnamurti, and M. Hefeeda, “Energy-efficient multicasting of scalable video streams over WiMAX networks,” IEEE Trans. Multimedia, vol. 13, no. 1, pp.102–115, Feb. 2011.
[83] W.- H. Kuo, T. Liu, and W. Liao, “Adaptive resource allocation for layer-encoded IPTV multicasting in IEEE 802.16 wireless networks,” IEEE Trans. Multimedia, vol. 13, no. 1, pp. 116–124, Jan. 2011.
[84] C. Hellge, D. G´omez-Barquero, T. Schierl, and T. Wiegand, “Layer-aware forward error correction for mobile broadcast of layered media,” IEEE Trans. Multimedia, vol. 13, no. 3, pp. 551–562, June 2011.
[85] H. Du, J. Liu, and J. Liang, “Downlink scheduling for multimedia Multicast/broadcast over mobile wimax: connection oriented multistate adaptation,” IEEE Wireless Commun., vol. 16, no. 4, pp. 72–79, Aug. 2009.
[86] 3GPP TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2.
[87] 3GPP TS 23.401 General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access.
[88] 3GPP TS 23.203 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture (Release 11).
[89] Y.-W. Chen, C.-W. Chen, and Y.-S. Lin, “Cross-layer design for efficient radio resource arrangement in OFDMA wireless access networks,” EURASIP Journal Wireless Commun. Networking, July 2011.
[90] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Techno. Mag., vol. 1, no.3, pp. 30–38, Sept. 2006.
[91] D. Cui, “LTE peak rates analysis,” in Proc. IEEE 18th Annual Wireless and Optical Commun. Conf. (WOCC’09), pp. 12–14, May 2009.
[92] L. Ruiz de Temino, G. Berardinelli, S. Frattasi, and P. Mogensen, “Channel-aware scheduling algorithms for SC-FDMA in LTE uplink,” in Proc. IEEE 19th Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC’08) , pp. 1–6, Sept. 2008.
[93] J. Lim, H. G. Myung, K. Oh, and D. J. Goodman, “Channel-dependent scheduling of uplink single carrier FDMA systems,” in Proc. IEEE 64th Veh. Technol. Conf. (VTC’06-Fall), pp. 1–5, Sept. 2006.
[94] S. Lee, I. Pefkianakis, A. Meyerson, S. Xu, and S. Lu, “Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink,” in Proc. IEEE INFOCOM, pp. 2611–2615, Apr. 2009.
[95] D. Gale, and L. S. Shapley, “College admissions and the stability of marriage,” Amer. Math. Monthly, vol. 69, pp. 9–15, 1962. (also avaliable: http://www.econ.ucsb.edu/ ~tedb/Courses/Ec100C/galeshapley.pdf).
[96] E.-Y. Gura, and M. Maschler, Insights Into Game Theory: An Alternative Mathematical Experience, Cambridge University Press, 2008.
[97] 3GPP, TR 25.892, “Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement (release 6)”, V6.0.0, 2004.
[98] WiMAX Forum: WiMAX System Evaluation Methodology Version 1.7, Sept. 2007.
[99] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30–38, Sept. 2006.
指導教授 陳彥文 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明