博碩士論文 100523032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.119.124.52
姓名 林玫君(Mei-Chun Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 多使用者正交分頻多重接取系統下使用干擾排列技術之資源配置演算法
(Efficient Methods for Resource Allocation and Interference Alignment in OFDMA Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對以多傳送天線多接收天線正交分頻多重接取系統,使用干擾排列技術,提出資源配置演算法讓系統吞吐量最大化。干擾消除被視為一個重要的技術,可以同時消除細胞間的干擾及不同使用者間的干擾,去加強整個系統的吞吐量。在執行干擾排列之前,系統必須選擇使用者組合來排列干擾。干擾排列之後,每一個使用者可以在沒有干擾的情況下接收到想要的訊號。由於設計干擾排列,將會把資源配置的問題變得與以往不同且困難。
我們針對干擾排列的架構,對每一個資源上的使用者的選擇做進一步的研究。首先,我們提出以干擾排列的設計為根基的方法,考慮接收端的束波成型向量,可以使得每個使用者得到比較好的吞吐量。 再者,我們設計兩種疊代的方案,更進一步的提升系統的表現。我們將使用者組合動態的調整以達到最大的系統吞吐量。模擬結果顯示,以干擾排列的設計為根基的方法比以往的演算法有更好的表現。此外,本文提出兩種方法利用疊代的概念可以接近最佳解,而計算複雜度也低於最佳解。且兩種方法的疊代次數是相當小的。
摘要(英) This paper considers resource allocation methods to achieve the maximum system throughput for a MIMO OFDMA system with an interference alignment technique. Interference alignment is considered as an important technique that could eliminate inter-cell interference and inter-user interference, and would enhance the system throughput. Before performing interference alignment, the system has to select paired user equipments that could align the interference signals. Consequently, each user equipment could receive the desired signal without interference. Owing to the design of interference alignment beamforming, the resource allocation problem becomes different and difficult. Based on the structure of interference alignment considered in this paper, the selection of the paired user equipments for each resource block is further investigated. This paper first presents the user equipment selection based on interference alignment. A proposed interference alignment-based selection scheme with a low computational complexity is developed by using the receive beamforming vectors, so that each resource block may be assigned to the paired user equipments that would have better system throughput. In addition, we design Sequential search scheme and Compete-and-compare scheme to further improve the performance. The paired user equipments are adjusted dynamically to achieve the maximum system throughput. Simulation results demonstrate that the proposed interference alignment-based selection scheme outperforms the existing algorithms. The performance of Sequential search scheme and Compete-and-compare scheme is very close to that of the optimal solution with an exhaustive search while the computational complexity is greatly reduced. The number of iterations in Sequential search scheme and Compete-and-compare scheme to obtain a solution is also pretty small.
關鍵字(中) ★ 干擾排列
★ 使用者選擇
★ 多輸出多輸入
★ 資源配置
★ 異質網路
關鍵字(英) ★ interference alignment
★ UE selection
★ MIMO
★ resource allocation
★ heterogeneous network
論文目次 Contents
論文摘要 i
Abstract ii
Contents v
List of Figures vii
List of Tables viii
Chapter1. Introduction - 1 -
1.1 OFDMA System - 1 -
1.2. Heterogeneous Networks - 1 -
1.3. Interference Alignment - 3 -
1.4. Review of Literature - 5 -
1.5. Contribution - 7 -
1.6. Organization - 8 -
1.7. Notation - 9 -
Chapter2. System Model and Problem Formulation - 10 -
2.1. System Model - 10 -
2.2. Problem Formulation - 14 -
Chapter3. Design of Interference Alignment - 17 -
Chapter4. Resource Allocation Schemes - 20 -
4.1. IA-based scheme - 20 -
4.2. Sequential search scheme - 24 -
4.3. Compete-and-compare scheme - 27 -
4.4. Comparison Sequential search scheme and Compete-and-compare scheme - 30 -
4.5. Computational complexity comparison - 34 -
Chapter5. Simulation Results - 37 -
5.1. Simulation Model - 37 -
5.2. Simulation Results - 39 -
Chapter6. Conclusions - 48 -
Reference - 49 -
參考文獻 Reference
[1] “IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems,” IEEE, Tech. Rep. 802.16, Oct. 2004.
[2] E. Dahlman, S. Parkvall and J. Skold, “3G Evolution: HSPA and LTE for mobile Broadband,” 2nd Edition, 2008
[3] S. Sesia, I. Toufik, and M. Barker, LTE- the UMTS Long Term Evolution: From Theory to Practice, UK: John Wiley & Sons Inc, Apr. 2009.
[4] Bjerke, B.A., “LTE-advanced and evolution of LTE deployments,” IEEE Wireless Commun.vol. 18, no. 5, pp. 4-5, Oct. 2011.
[5] G. Amitava, R. Rapeepat, M. Bishqarup, M. Nitin, and T. Tim, “LTE-advanced: next-generation wireless broadband technology,” IEEE —Submitted for publication),” IEEE Wireless Commun.vol .17, no. 3, pp. 10-22, Jun. 2010.
[6] C. Gen, Y. Dacheng, Y. Xuan, and Z. Zin, “A downlink joint power control and resource allocation scheme for co-channel macrocell-femtocell networks,” in Proc. IEEE Wireless Commun. And Networking Conf., pp. 281-286, Mar. 2009.
[7] K. Quan, S. Joachim, and D. Heinz, “Joint Base-Station Association, Channel Assignment, Beamforming and Power Control in Heterogeneous Networks,” in Proc. IEEE Veh. Tech. Conf.-Spring, pp.1-5, May 2012.
[8] P. Jiyong, W. Jun, W. Dongyao, S. Gang, J. Qi, and L. Jianguo, “Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks,” in Proc IEEE Wireless Commun. And Networking Conf., pp.1613-1617, Apr. 2012.
[9] K. Balachandran, Kang, J. H., Karakayali K. and Rege K., “Cell selection with downlink resource partitioning in heterogeneous networks,” IEEE int. Conf. Commun. (ICC), pp. 1-6, Jun. 2011.
[10] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.
[11] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the capacity of wireless networks through distributed interference alignment,” preprint. Available: http://arxiv.org/abs/0803.3816.
[12] M.A. Maddah-Ali, A. S. Motahari, A. K. Khandani, “Communication over MMO X chennles: interference alignment, decomposition and performance analysis,” IEEE Trans. Inf. Theory, vol. 54, pp. 3457-3470, Aug. 2008.
[13] S. Gollakota, S. D. Perli, and D. Katabi, “Interference Alignment and Cancellation,” SIGCOMM , Aug. 2009.
[14] K. Gomadam, V.R. Cadambe, and S.A. Jafar, “Approaching the capacity of wireless networks through distributed interference alignment,” in proc. IEEE Global Telecommunications Conf. (GLOBECOM), pp. 1-6, 2008.
[15] I. Santamaria, O.Gonzalez,R.W.H. , Jr., and S.W. Peters, “Maximum sum-rate interference alignment algorithms for MIMO channels,” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), Dec. 2010.
[16] P. Mohapatra, K. E. Nissar, and C. R. Murthy, “Interference alignment algorithms for the K users constant MIMO interference channel,” IEEE Trans. Signal Processing, vol. 59, no. 11, pp.5499-5508, Nov. 2011.
[17] F. Pantisano, M. Bennis, W. Saad, and M. Debbad, “Cooperative interference alignment in femtocell networks,” in Proc. IEEE Global Telecommunications Conf. pp. 1-6, Dec. 2011.
[18] W. Shin, N. Lee, W. Noh, H-H. Choi, B. Clerckx, C. Shin, and K. Jang, “Hierarchical interference alignment for Heterogeneous networks with multiple antennas,” in Proc. IEEE int. Conf. Commun. (ICC) pp. 1-6, Jun. 2011.
[19] H-H. Lee and Y-C. Ko, “ Linear transceiver design based on interference alignment for MIMO heterogeneous networks,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Commun. (PIMRC), pp. 1645-1650, Sept. 2012.
[20] W. Shin, N. Lee, J-B. Lim, C. Shin, and K. Jang, “On the design of interference alignment scheme for two-cell MIMO interfering broadcast channels,” IEEE Trans. Wireless Commun. vol. 10, no. 2, pp. 437-442, Feb. 2011.
[21] J. Tang, S. Lambotharan, "Interference Alignment Techniques for MIMO Multi-Cell Interfering Broadcast Channels," in Proc. IEEE Trans., vol. 61, no. 1, pp.164-175, Jan. 2013.
[22] J. H. Lee and W. Choi, “Interference alignment by opportunistic user selection in 3-user MIMO interference channels,” in Proc. IEEE int. Conf. Commun. (ICC) pp. 1-5, Jun. 2011.
[23] J. H. Lee and W. Choi, “Opportunistic interference aligned user selection in multiuser MIMO interference channels,” IEEE Global Telecommunications Conf. (GLOBECOM), pp. 1-5, Dec. 2010.
[24] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3658-3663, Sept. 2006.
[25] X. Zhang, E. A. Jorswieck, B. Ottersten, and A. Paulraj, “User selection schemes in multiple antenna broadcast channels with guaranteed performance,” IEEE Signal Processing Advances in Wireless Commun. (SPAWC), pp.1-5, Jun. 2007.
[26] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal vol. 24, no. 3, pp. 528-541, Mar. 2006.
[27] J. Yang, S. Jang, and D. K. Kim, “Sum rate approximation of zeros-forcing beamforming with semi-orthogonal user selection,” Commun. and Network Journal, vol. 12, no. 3, pp.222-230, Jun. 2010.
[28] M. P. Holmes, A. G. Gray, and C. L. Isbell, “Fast SVD for largescale matrices,” College of Computing, Georgia Institute of Technology, Atlanta, GA.
[29] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B, 3GPP, TR 36.931 V9.0.0, May. 2011.
[30] K. Ko and J. Lee, “Multiuser MIMO user selection based on chordal distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649-654, Mar. 2012.
[31] N. Chayat, “Updated submission template for TGa – revision 2,” Doc. IEEE 802.11-98/156r2, Apr. 1998.
[32] Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), 3GPP, TS 36.814 V9.0.0, Mar. 2010.
[33] M. Wahaj, A. Vastberg and T. Elder, “Energy Efficiency Improvement Through Pico Base Stations For A Green Field Operator,” in Proc. IEEE Wireless Commun. And Networking Conf., pp. 2203-2208, Apr. 2012.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明