博碩士論文 100522107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.89.48
姓名 詹士毅(Shih-Yi Chan)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 無線感測網路阻障覆蓋多頻道及時槽排程
(Multi-Channel and Time-Slot Scheduling for Barrier Coverage in WSNs)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 最佳化k-阻障覆蓋問題(optimal k-barrier coverage problem, OKBCP)是探討如何在無線感測網路(wireless sensor network, WSN)之監控區域挑選感測器節點(sensor node)使其形成最高品質之k-阻障覆蓋,使每個穿越WSN監控區域的入侵者,都能被k個以上的偵測節點偵測到。而匯集節點連通性阻障覆蓋最佳化問題(sink-connected barrier coverage optimization problem, SCBCOP)則基於上述問題中加入探討如何選擇最少數量的轉傳節點(forwarding node),使每個偵測節點(detecting node)皆具有連接至匯集節點之連通性(sink-connectivity),藉以滿足帶狀監控區域之安全需求。然而,即使已有演算法(如optimal node selection algorithm, ONSA)可以找到具匯集節點連通性之最佳化k-阻障覆蓋,但因為有許多偵測節點會同時發送入侵資訊,因而可能形成大量封包干擾(或碰撞)而無法即時將入侵資訊通報至匯集節點。本論文之目的即為探討如何在最佳化k-阻障覆蓋中達成節點間降低干擾及路由路徑選擇且滿足匯集節點連通之性質。
針對上述問題,本論文提出: 1) 建立多匯集節點轉傳路由樹演算法,藉以滿足路由路徑建立及匯集節點之連通性。 2) 轉傳路由樹多頻道及時槽排程演算法,以進一步減少感測器節點間封包傳輸之干擾。我們使用OPNET模擬器上之IEEE 802.15.4模組來模擬所提出演算法之效能。實驗結果顯示,本研究所建立之演算法能有效減少感測器節點之封包傳輸干擾,因此具有最低封包丟失率、最短封包延遲以及最大網路平均吞吐量。
摘要(英) The optimal k-barrier coverage problem (OKBCP) deals with the selection of sensor nodes in wireless sensor network(WSN). The aim is to have any intruder who goes across monitoring area of the WSN detected by k or more detecting nodes. Based on the above scenario, the sink-connected barrier coverage optimization problem (SCBCOP) discusses how to select a minimal number of forwarding nodes, and ensure every detecting node with sink-connectivity to meet the safety requirements. Although there are algorithm (as optimal node selection algorithm, ONSA) that can be used to find optimal k-barrier coverage with sink-connectivity, the fact that multiple detecting nodes simultaneously transmit intrusion event could cause packet interference(or collision) and prevent intrusion event from being reported to the sink in real time. This study investigates methods for reducing interference and selecting routing paths among the nodes in optimal k-barrier coverage to satisfy sink-connectivity. To address the problems mentioned above, this study proposes the following strategies: 1) a multi-sinks forwarding routing trees algorithm to build routing paths and satisfy sink-connectivity. 2) a multi-channel and time-slot scheduling algorithm to further reduce the interference caused by packet transmission among sensors. This study employed the IEEE 802.15.4 module of OPNET simulator to simulate the performance of the proposed algorithms. Simulation results show that the proposed algorithm effectively reduces packet interference, and provides the lowest packet dropping rate and delay, as well as the highest throughput .
關鍵字(中) ★ 無線感測網路
★ 最佳化k-阻障覆蓋
★ 匯集節點連通性阻障覆蓋最佳化
★ 多頻道及時槽排程
★ IEEE 802.15.4
關鍵字(英) ★ Wireless Sensor Network
★ Optimal k-Barrier Coverage
★ Sink-Connected Barrier Coverage Optimization
★ Multi-Channel and Time-Slot Scheduling
★ IEEE 802.15.4
論文目次 中文摘要---------------------------------i
Abstract---------------------------------ii
誌謝-------------------------------------iii
目錄-------------------------------------iv
圖目錄-----------------------------------v
表目錄-----------------------------------vi
第一章、 緒論---------------------1
第二章、 相關研究-----------------5
2.1 阻障覆蓋-------------------------5
2.2 頻道配置-------------------------9
2.3 IEEE 802.15.4--------------------12
第三章、 提出方法-----------------15
3.1 問題定義及網路環境---------------15
3.1.1 網路環境-------------------------15
3.1.2 問題定義-------------------------16
3.2 演算法設計-----------------------17
3.2.1 建立多匯集節點轉傳路由樹演算法---17
3.3.1 多頻道及時槽排程演算法-----------28
第四章、 實驗模擬-----------------32
4.1 環境設定-------------------------32
4.1.1 IEEE 802.15.4樹狀架構運作及同步--33
4.2 模擬度量-------------------------36
4.3 效能評估-------------------------37
第五章、 結論---------------------42
參考文獻---------------------------------44
參考文獻 [1] Chen, A., Kumar, S., & Lai, T. H. (2010). Local barrier coverage in wireless sensor networks. Mobile Computing, IEEE Transactions on , 9(4), 491-504.
[2] Ding, Y., Huang, Y., Zeng, G., & Xiao, L. (2012). Using partially overlapping channels to improve throughput in wireless mesh networks. Mobile Computing, IEEE Transactions on, 11(11), 1720-1733.
[3] Fotue, D., Melakessou, F., Labiod, H., & Engel T. (2011). A distributed hybrid channel selection and routing technique for wireless sensor network. Vehicular Technology Conference (VTC Fall), 2011 IEEE, 1-6.
[4] Gage, D. W. (1992). Command control for many-robot systems. Naval Command Control and Ocean Surveillance Center RDT and E Div San Diego Ca.
[5] Ghosh, A., Incel, O. D., Kumar, V. S. A., & Krishnamachari, B. (2009). Multi-channel scheduling algorithms for fast aggregated convergecast in sensor networks. In Mobile Adhoc and Sensor Systems, 2009. MASS ’09. IEEE 6th International Conference on, 363-372.
[6] Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081-3099.
[7] Koubâa, A., Cunha, A., Alves, M., & Tovar, E. (2007). A time division beacon scheduling mechanism for ZigBee cluster-tree wireless sensor networks. In Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro Conference on, 125-135.
[8] Kumar, S., Lai, T. H., & Arora, A. (2005). Barrier coverage with wireless sensors. In Proceedings of the 11th annual international conference on Mobile computing and networking, 284-298.
[9] Lai, Y. L., & Jiang, J. R. (2011). Sink-connected barrier coverage optimization for wireless sensor networks. In ICWMC 2011, the Seventh International Conference on Wireless and Mobile Communications, 198-203.
[10] Li, H., Cheng, Y., Wan, P. J., & Cao, J. (2011). Local sufficient rate constraints for guaranteed capacity region in multi-radio multi-channel wireless networks. In INFOCOM, 2011 Proceedings IEEE , 990-998.
[11] Li, H., Srivastava, A., & Cheng, Y. (2011). Computing the optimal capacity of multi-radio multi-channel wireless network over partially overlapping channels. In Global Telecommunications Conference( GLOBECOM 2011) , 1-5.
[12] Li, J., Chen, J., & Lai, T. H. (2012). Energy-efficient intrusion detection with a barrier of probabilistic sensors. In INFOCOM, 2012 Proceedings IEEE, 118-126.
[13] Liao, W. H., Kedia, S. P., & Dubey, A. K. (2012). Scheduling and channel assignment algorithm for IEEE 802.16 mesh networks using clique partitioning technique. Computer Communications, 35(16), 2025-2034.
[14] Liu, B., Dousse, O., Wang, J., & Saipulla, A. (2008). Strong barrier coverage of wireless sensor networks. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, 411-420.
[15] Mohsenian Rad, A. H., & Wong, V. W. (2007). Partially overlapped channel assignment for multi-channel wireless mesh networks. In Communications, 2007. ICC’07. IEEE International Conference on. 3770-3775.
[16] Saipulla, A., Westphal, C., Liu, B., & Wang, J. (2009). Barrier coverage of line-based deployed wireless sensor networks. In INFOCOM 2009 ,IEEE . 127-135.
[17] Singh, D. K., Srinivas, K., & Das, D. B. (2012). A dynamic channel assignment in GSM telecommunication network using modified genetic algorithm. In Proceedings of the 6th Euro American Conference on Telematics and Information Systems, 1-5.
[18] Suliman, S. I., Kendall, G., Musirin, I., & Wati, Y. (2010). A permutation based technique for channel assignment problem. In Research and Development(SCOReD), 2010 IEEE Student Conference on, 67-71.
[19] Toscano, E., & Bello, L. L. (2012). Multichannel superframe scheduling for IEEE 802.15.4 industrial wireless sensor networks. Industrial Informatics, IEEE Transactions on, 8(2), 337-350.
[20] Zhou, J., Peng, L., Deng, Y., & Lu, J. (2012). An on-demand routing protocol for improving channel use efficiency in multichannel ad hoc networks. Journal of Network and Computer Applications, 35(5), 1606-1614.
[21] IEEE standard for information technology-- local and metropolitan area networks-- specific requirements-- part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs)(2006).
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2013-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明