博碩士論文 100522088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.116.14.12
姓名 簡亦楚(Yi-Chu Chien)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以多隸屬角色觀點實作文本訊息傳遞之社群行為分析系統
(Text-based Influence Propagation Analysis System for Multiple Role Social Network)
相關論文
★ 應用自組織映射圖網路及倒傳遞網路於探勘通信資料庫之潛在用戶★ 基於社群網路特徵之企業電子郵件分類
★ 行動網路用戶時序行為分析★ 社群網路中多階層影響力傳播探勘之研究
★ 以點對點技術為基礎之整合性資訊管理 及分析系統★ 在分散式雲端平台上對不同巨量天文應用之資料區域性適用策略研究
★ 應用資料倉儲技術探索點對點網路環境知識之研究★ 從交易資料庫中以自我推導方式探勘具有多層次FP-tree
★ 建構儲存體容量被動遷徙政策於生命週期管理系統之研究★ 應用服務探勘於發現複合服務之研究
★ 利用權重字尾樹中頻繁事件序改善入侵偵測系統★ 有效率的處理在資料倉儲上連續的聚合查詢
★ 入侵偵測系統:使用以函數為基礎的系統呼叫序列★ 有效率的在資料方體上進行多維度及多層次的關聯規則探勘
★ 在網路學習上的社群關聯及權重之課程建議★ 在社群網路服務中找出不活躍的使用者
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 社群網路服務的大量竄起,讓人們在網路上產生了許多交互影響的社群行為,其中以資訊分享及追隨行為最為廣泛,而資訊的型態多半是以文本的方式做傳遞,例如新聞、評論及活動消息等等,產生許多評估社群網路中個別使用者之影響力抑或最大影響範圍的研究,但其中卻缺乏對於訊息傳遞行為是如何形成、如何影響做更深入分析。
以往的影響力探討,多半是對於網路結構的剖析,對於訊息的性質或者是傳遞行為中使用者的屬性未有深入定義,即使有將使用者分群,也多是利用單面向角度思考,但社群網路應屬於一個異質性網路,使用者應在不同的影響關係呈現不同的身份,故本研究別於以往單分類使用者的方式,改以多隸屬興趣程度在不同階層判別使用者的角色,並對於訊息傳遞資料有進一步的探勘,試圖建置一個可從多構面分析文本訊息傳遞行為的工具,藉此分析者除了可以了解訊息傳遞的因由外,還能有效地應用至協同式推薦或口碑式行銷等。
本研究分為四個部分:第一部分為定義興趣社群階層,利用階層概念將興趣從細膩到廣泛的作定義。第二部分為根據使用者過去發表的文章及活動紀錄(如轉貼或者追隨等),歸屬使用者較具有代表性的興趣主題群,第三部分為萃取有效的訊息傳遞以客觀地判斷使用者彼此的交互影響行為。第四部份為建置分析平台,針對社群行為之訊息傳播,提出多種分析功能並利用圖表方式讓分析者能快速掌握資訊結果。
摘要(英) With the rise of social network service, there are many social behaviors. The most popular behaviors are information sharing and following. Users share their ideas and interesting things with their friends on social network sites. Moreover, users select some people to follow and obtain information. The past researchers focused on the evaluation of influence, based on using the social structure to analyze and find the most influential user.
Few researches discussed how the propagation took place between users. And I believe that social network is a heterogeneous network, we cannot just classify a user as a specific topic. User are supposed to have multiple roles in the different topics. With the different influential relationship, user’s identity may be active or passive. So, I propose an integrated analysis system, which supports text-based content and find the valuable feature of social network.
The research is composed of four parts. First, I define the hierarchical interesting topic structure generated by data related with targeted users. Second, I try to determine the feature of users according to their activities. User may belong to one interesting topic or many interesting topic at the same time. Third, I extract the influential propagation paths for analysis. The last part is that I build TIPAS (Text-based Influence Propagation Analysis System), which provides analyst to analyze influence which caused propagation paths. For easy understanding, I also use the concept of data visualization to display the analysis results.
關鍵字(中) ★ 社群網路分析
★ 影響力
★ 資料視覺化
★ 異質性網路
★ 訊息傳遞
★ 階層概念
關鍵字(英) ★ Social Network Analysis
★ Influence
★ Data Visualization
★ Heterogeneous Network
★ Propagation Path
★ Hierarchical Concept
論文目次 摘 要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
一、 緒論 1
1-1 研究動機和目的 1
1-2 論文架構 3
二、 背景及相關研究 4
2-1 背景 4
2-1-1 社群網路分析 (Social Network Analysis, SNA) 4
2-1-2 網頁資料探勘 (Web Mining) 5
2-1-3 資料視覺化 (Data Visualization) 6
2-2 相關研究 7
三、 系統設計 9
四、 研究方法 12
4-1 問題描述 12
4-2 主題興趣階層萃取與生成 13
4-2-1 興趣主題之特徵萃取 13
4-2-2 興趣主題之階層生成 13
4-3 使用者行為探討及興趣分析 16
4-3-1文本資料之特徵萃取 16
4-3-2 產生使用者的興趣主題 17
4-4 訊息傳遞之影響力探勘 19
4-4-1 追隨⁄訂閱關係 19
4-4-2 收藏⁄分享行為 20
4-4-3 使用者之影響力評估 22
五、 系統展示 25
5-1 資料來源 25
5-1-1 資料分析之興趣階層 25
5-1-2 資料分析之文章分類 27
5-1-3 資料分析之使用者歸屬 28
5-2 TIPAS 實作 31
5-2-1 系統版面配置 31
5-2-2 參數設定操作介紹 34
5-2-3 社群結構圖之視覺化應用解釋 35
5-2-4 系統功能應用展示 36
六、 結論及未來展望 44
參考文獻 45
參考文獻 [1]. JULIUS T. TOU, RAFAEL C. GONZALEZ, “Maximin-Distance Algorithm” in Pattern Recognition Principles: pp. 92-94, United States of America, 1981
[2]. Social Network Analysis Theory and Applications, e-book, 2011
[3]. Mark S. Granovetter. The strength of weak ties American Journal of Sociology, 78(6): pp. 1360–1380, 1973.
[4]. D. Krackhardt. The Strength of Strong ties: the importance of philos in networks and organization in N. Nohria and R. Eccles (eds), Networks and Organizations: Structure, Form and Action: pp. 216-239. Harvard Business School Press, Boston, MA, 1992.
[5]. David McCandless, http://www.informationisbeautiful.net/
[6]. Hans Rosling, http://www.gapminder.org/
[7]. Peter J. Carrington, John Scott, Stanley Wasserman. Models and Methods in Social Network Analysis, Cambridge University, United States of America, 2005
[8]. Guandong Xu, Yanchun Zhang, Lin Li. Web Mining and Social Networking Techniques and Applications, Springer, United States of America, 2011
[9]. Gerard Salton, Chris Buckley, Term Weighting Approaches in Automatic Text Retrieval, Cornell University Ithaca, NY, USA, 1987
[10]. Scott Murray, Interactive Data Visualization for the Web, United States of America, 2010
[11]. Pam Dyer: Blogs Influence Consumer Spending More Than Social Networks, From http://www.pamorama.net/2013/03/14/blogs-influence-consumer-spending-more-than-social-networks/#axzz2SgyQt7OF
[12]. 霍炬:从Reader之死看Google的短视。2013年3月19日,取自http://www.huxiu.com/article/11593/1.html
[13]. Open Directory Project, http://www.dmoz.org/
[14]. Epinions, http://www.epinions.com/?sb=1
[15]. Youtube, http://www.youtube.com/
[16]. Flickr, http://www.flickr.com/
[17]. Twitter , https://twitter.com/
[18]. Plurk , http://www.plurk.com/top/
[19]. digg, http://digg.com
[20]. Delicious, http://delicious.com/
[21]. Normal Distribution, https://en.wikipedia.org/wiki/Normal_distribution
[22]. Narayanam R, Narahari Y, “A Shapley Value-Based Approach to Discover Influential Nodes in Social Networks”, IEEE Transactions on Automation Science and Engineering, Volume 8, Issue 1, pp. 130-147, Jan 2011
[23]. Masahiro Kimura, Kazumi Saito, Ryohei Nakano, Hiroshi Motoda, “Extracting influential nodes on a social network for information diffusion”, Data Mining and Knowledge Discovery, Volume 20, Issue 1, pp. 70-97, Jan 2010
[24]. M. E. J. Newman, Juyong Park, “Why social networks are different from other types of networks”, Physical Review E, Volume 68, No. 3, Sep 2003
[25]. Aris Anagnostopoulos, Ravi Kumar, Mohammad Mah, ”Influence and correlation in social networks”, KDD ’08 Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 7-15, 2008
[26]. Lu Liu, Jie Tang, Jiawei Han, Meng Jiang, Shiqiang Yang, “Mining Topic-level Influence in Heterogeneous Network”, ACM international conference on Information and knowledge management, pp. 199-208, 2010
[27]. Jie Tang, Jimeng Sun, Chi Wang, Zi Yang, “Social Influence Analysis in Large-scale Networks”, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807-816, Jun 2009
[28]. Frédéric Gilbert, Paolo Simonetto, Faraz Zaidi, Fabien Jourdan, Romain Bourqui, “Communities and hierarchical structures in dynamic social networks: analysis and visualization”, Social Network Analysis and Mining, Volume 1, Issue 2, pp. 83-95, April 2011
[29]. UCINET, https://sites.google.com/site/ucinetsoftware/home
[30]. Pajek, http://vlado.fmf.uni-lj.si/pub/networks/pajek/
[31]. Nicola Barbieri, Francesco Bonchi, Giuseppe Manco, “Topic-Aware Social Influence Propagation Models”, Data Mining (ICDM), 2012 IEEE 12th International Conference, pp. 81-90, Dec 2012
[32]. Jochen Schiller and Agnès Voisard, Location-Based Services, Elsevier, United States of America, 2004
[33]. Yung-Ming Li , Chia-Hao Lin, Cheng-Yang Lai, “Identifying influential reviewers for word-of-mouth marketing”, Electronic Commerce Research and Applications, 2010 Elsevier, Volume 9, Issue 4, pp. 294-304, July–August 2010
[34]. Michael Trusov, Anand V. Bodapati, Randolph E. Bucklin, “Determining Influential Users in Internet Social Networks” Journal of Marketing Research, Volume 47, Issue 4, pp. 643-658, 2010
[35]. TEDxTaipei:David McCandless:資訊視覺化,橫跨美感和理解力的設計http://tedxtaipei.com/2012/12/the-beauty-of-data-visualization/
[36]. MySQL, http://www.mysql.com/
[37]. jQWidgets, http://www.jqwidgets.com/
[38]. D3(Data-Driven Documents), http://d3js.org/
指導教授 蔡孟峰(Meng-Feng Tsai) 審核日期 2013-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明