博碩士論文 100522067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.117.148.9
姓名 劉乃菀(Nai-yuan Liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 硬體化動態物件偵測引擎設計與手勢辨識應用
(Design of Hardwared Motion Object Detection Engine and Application of Gesture Recognition)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以視覺為基礎的人機互動(Human-Machine Interaction,HMI)技術需藉助一系列複雜的影像處理流程,因而需要高速的處理器才足以因應演算法的實作,對於硬體資源有限的嵌入式系統,要實現即時人機互動的影像處理有其困難度。本研究提出一個即時的動態物件偵測嵌入式硬體架構,再將之應用以手勢辨識。這個方法從連續影像適應性地建立背景模型,並使用連通物件技術標定目標物件。在手勢辨識的應用中,目標物件就是運動手勢。
我們採用MIAT嵌入式系統設計方法論,將動態物件偵測演算法設計成嵌入式硬體,以大幅提高系統即時性能。然後將得到的動態物件資訊傳入手勢辨識系統進行分析,透過動態手勢軌跡變化特徵,結合模糊神經網路(Fuzzy Neural Network, FNN)推論系統進行動態手勢辨識,最後取得辨識結果提供人機互動的指令。使用者可以利用本系統擴充自訂手勢指令以增加其應用範疇和客製功能。我們所實現的即時動態物件偵測硬體加速引擎工作時脈可達107.63MHz,估測其效率可達每秒350張640×480影像的效能,相較於軟體系統,本研究使用低成本的硬體即可滿足即時嵌入式系統需求。
摘要(英) Vision-based human-computer interaction (HMI) technology requires a series of complex image processing and a high-speed processor is necessary for implementing those algorithms. For embedded hardware system, it is even harder to achieve a real-time human-computer interaction system which is based on image processing. For these reasons, we proposed a design of real-time hardware motion object detection engine and the application of gesture recognition. First, a background model is established adaptively from continuous images. Then, the target object will be pointed out with connected component. In gesture recognition, the target object is the moving hand gesture.
In implementation, the MIAT embedded system design methodology is applied to the hardware motion object detection engine to improve the system performance. Afterwards, the moving object information will be sent to the gesture recognition system. The fuzzy neural network (FNN) is also applied in the gesture recognition system for analyzing the dynamic gesture trajectory features. Finally, the results of gesture recognition are provided for the instructions of human-computer interaction. Beside, in order to increase the scope of application and customization, we designed a user interface for users to expand their own gesture command in the system.
The proposed hardware motion object detection engine can work up to 107.63MHz of the system clock, which is equivalent to approximately 350 fps using images with 640 × 480 dpi. Comparing to software systems, our system can easily meet the needs of real-time embedded systems with low-cost hardware.
關鍵字(中) ★ 物件偵測
★ 手勢辨識
關鍵字(英)
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 2
1.3 論文架構 3
1.4 系統架構 4
第二章 相關文獻探討 5
2.1 物件偵測 5
2.1.1 點偵測(Point Detectors) 6
2.1.2 切割(Segmentation) 7
2.1.3 監督式分類器(Supervised Classifiers) 8
2.1.4 背景建模(Background Modeling) 9
2.2 手勢辨識 12
2.2.1 靜態手勢辨識 12
2.2.2 動態手勢辨識 14
第三章 即時物件偵測嵌入式硬體設計 16
3.1 嵌入式硬體高階合成方法論 16
3.1.1 IDEF0 17
3.1.2 Grafcet 18
3.2 背景建模 21
3.2.1 Codebook特徵向量 21
3.2.2 背景訓練演算法 24
3.2.3 背景切割演算法 25
3.2.4 階層式模組化設計 26
3.2.5 管線化設計 27
3.3 形態學影像處理 28
3.3.1 斷開法 29
3.3.2 Line Buffer 31
3.3.3 斷開法硬體設計 34
3.4 連通元件 35
3.4.1 連通元件演算法 35
3.4.2 連通元件硬體設計 37
3.5 物件偵測的階層式模組化設計 38
第四章 手勢辨識 40
4.1 基於模糊神經網路的動態手勢辨識 40
4.1.1 手勢辨識軟體設計架構 41
4.1.2 手勢軌跡特徵擷取 42
4.1.3 模糊神經網路分類器 44
4.1.4 動態手勢辨識方法 47
4.2 自訂擴充手勢 49
4.2.1 手勢指令集 50
4.2.2 指令流程控制 51
第五章 模擬分析與驗證 53
5.1 實驗設備與開發環境 53
5.2 即時物件偵測系統的嵌入式硬體實作 54
5.2.1 背景建模模組 55
5.2.2 斷開模組 56
5.2.3 連通元件模組 57
5.2.4 物件偵測系統之FPGA硬體資源使用狀況 58
5.3 實驗結果 59
5.3.1 即時物件偵測系統 59
5.3.2 動態手勢辨識 61
5.4 速度分析 61
第六章 結論與未來研究方向 64
6.1 結論 64
6.2 未來研究方向 65
參考文獻 66
參考文獻 [1] Wikipedia., "Human-computer interaction," ed.
[2] J. M. Carroll. Human Computer Interaction(HCI). Available: http://www.interaction-design.org/encyclopedia/human_computer_interaction_hci.html#heading_Beyond_the_desktop_html_pages_35313
[3] 劉說芳, 陳連福, 陳莞鈞, and 陳盈秀, "探討感官多模式之人機互動介面發展與應用形式," 2010.
[4] 楊國棟. Wii介紹. Available: http://www2.nuk.edu.tw/lib/e-news/20071101/3-3.htm
[5] Wikipedia. iPhone. Available: http://zh.wikipedia.org/wiki/IPhone
[6] Wikipedia., "Kinect," ed.
[7] Wikipedia. Leap Motion. Available: http://en.wikipedia.org/wiki/Leap_Motion#Hardware_partnerships
[8] 張光華, "A Study on the Economic Polarized Light Stereoscopic Projectionn System," Master, Optics and Photonics, National Central University, 2007.
[9] (2003). Pulsed time-of-flight laser rangefinding. Available: http://herkules.oulu.fi/isbn9514269667/html/c305.html
[10] C. Guan, L. G. Hassebrook, D. L. Lau, and V. Yalla, "Near-infrared composite pattern projection for continuous motion hand-computer interaction," Journal of Visual Communication and Image Representation, vol. 18, pp. 141-150, Apr 2007.
[11] M. Z. Brown, D. Burschka, and G. D. Hager, "Advances in computational stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 993-1008, Aug 2003.
[12] 蘇木春 and 張孝德, 機器學習:類神經網路、模糊系統以及基因演算法: 全華圖書股份有限公司, 2010.
[13] R. Basri and D. W. Jacobs, "Recognition using region correspondences," International Journal of Computer Vision, vol. 25, pp. 145-166, Nov 1997.
[14] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, Nov 2004.
[15] J. Y. Kuo, T. Y. Lai, F. Huang, and K. Liu, "The color recognition of objects of survey and implementation on real-time video surveillance," IEEE International Conference on Systme Man and Cybernetics(SMC), pp. 3741-3748, 2010.
[16] J. H. Cho and S. D. Kim, "Object detection using spatio-temporal thresholding in image sequences," Electronics Letters, vol. 40, pp. 1109-1110, Sep 2 2004.
[17] M. S. Nagmode and M. A. Joshi, "Moving Object Detection From Image Sequence in Context with Multimedia Processing," IET International Conference on Wireless, Moble and Multimedia Networks, pp. 259-262, 2008.
[18] H. P. Moravec, "Visual mapping by a robot rover," International Joint Conference on Artificial intelligence, vol. 1, pp. 598-600, 1979.
[19] C. Harris and M. Stephens, "A combined corner and edge detector," The Fourth Alvey Vision Conference, pp. 147-151, 1988.
[20] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 603-619, May 2002.
[21] J. B. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888-905, Aug 2000.
[22] C. P. Papageorgiou, M. Oren, and T. Poggio, "A general framework for object detection," International Conference on Computer Vision, pp. 555-562, 1998.
[23] H. A. Rowley, S. Baluja, and T. Kanade, "Neural network-based face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 23-38, Jan 1998.
[24] P. Viola, M. J. Jones, and D. Snow, "Detecting pedestrians using patterns of motion and appearance," International Journal of Computer Vision, vol. 63, pp. 153-161, Jul 2005.
[25] N. J. B. Mcfarlane and C. P. Schofield, "Segmentation and Tracking of Piglets in Images," Machine Vision and Applications, vol. 8, pp. 187-193, 1995.
[26] C. Stauffer and W. E. L. Grimson, "Learning patterns of activity using real-time tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 747-757, Aug 2000.
[27] N. M. Oliver, B. Rosario, and A. P. Pentland, "A Bayesian computer vision system for modeling human interactions," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 831-843, Aug 2000.
[28] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, "Real-time foreground-background segmentation using codebook model," Real-Time Imaging, vol. 11, pp. 172-185, 2005.
[29] J. Shi and C. Tomasi, "Good features to track," IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 593-600, 1994.
[30] A. Yilmaz, O. Javed, and M. Shah, "Object tracking: A survey," ACM Computing Surveys, vol. 38, 2006.
[31] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International Journal of Computer Vision, vol. 1, pp. 321-332, 1988.
[32] (2011). 背景建模算法(一)颜色背景模型. Available: http://underthehood.blog.51cto.com/2531780/484191
[33] S. Brutzer, B. Hoferlin, and G. Heidemann, "Evaluation of Background Subtraction Techniques for Video Surveillance," CVPR, pp. 1937-1944, 2011.
[34] R. Xue, H. Song, and H. Zhang, "Overview of Background Modeling Method Based on Pixel," 电视技术, vol. 36, 2012.
[35] R. Jain and H. Nagel, "On the analysis of accumulative difference pictures from image sequences of real world scenes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, pp. 206-214, 1979.
[36] J. Zhong and S. Sclaroff, "Segmenting foreground objects from a dynamic textured background via a robust kalman filter," IEEE International Conference on Computer Vision(ICCV), vol. 2, 2003.
[37] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, "Pfinder: Real-time tracking of the human body," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, Jul 1997.
[38] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, "Background and foreground modeling using nonparametric kernel density estimation for visual surveillance," Proceedings of the IEEE, vol. 90, pp. 1151-1163, Jul 2002.
[39] C. Manresa, J. Varona, R. Mas, and F. J. Perales, "Hand Tracking and Gesture Recognition for Human-Computer Interaction," ELCVIA, vol. 5, pp. 96-104, 2005.
[40] W. T. Freeman and M. Roth, "Orientation Histograms for Hand Gesture Recognition," IEEE Intl. Wkshp. on Automatic Face and Gesture Recognition, vol. 50, p. 174, 1995.
[41] K. J. Chang, "Computer Vision Based Hand Gesture Recognition System," Master, Electrical Engineering, National Tsing Hua University, 2005.
[42] L.-g. Zhang, J.-q. Wu, W. Gao, and H.-X. Yao, "Hand Gesture Recognition Based on Hausdorff Distance," Journal of Image and Graphics, vol. 7, 2002.
[43] M. Elmezain, A. Al-Hamadi, and B. Michaelis, "Hand Trajectory-based Gesture Spotting and Recognition Using HMM," IEEE International Conference on Image, pp. 3541-3544, 2009.
[44] A. Corradini, "Dynamic TimeWarping for Off-line Recognition of a Small Gesture Vocabulary," IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time System, pp. 82-89, 2001.
[45] K. Murakami and H. Taguchi, "Gesture Recognition using Recurrent Neural Networks," SIGCHI Conference on Human Factors in Computing System, pp. 237-242, 1991.
[46] C.-H. Chen and J.-H. Dai, "Design and High-Level Synthesis of Discrete-Event Controller," National Conference of Automatic Control and Mechtronics System, pp. 75-80, 2002.
[47] C.-H. Chen, T.-K. Yao, J.-H. Dai, and C.-Y. Chen, "A pipelined multiprocessor SOC design methodology for streaming signal processing," Journal of Vibration and Control.
[48] C.-H. Chen, C.-M. Kuo, S.-H. Hsieh, and C.-Y. Chen, "High efficient VLSI implementation of probabilistic neural network image interpolator," Journal of Vibration and Control.
[49] C.-H. CHen, C.-M. Kuo, C.-Y. Chen, and J.-H. Dai, "The designe and synthesis using hierarchical robotic discrete-event modeling," Journal of Vibration and Control, 2012.
[50] R. J. Mayer, "IDEF0 Function Modeling," Air force Systems Command, 1992.
[51] R. David, "Grafcet - a Powerful Tool for Specification of Logic Controllers," IEEE Transactions on Control Systems Technology, vol. 3, pp. 253-268, Sep 1995.
[52] Y.-S. Hsu, "Continuous 3D Gesture Recognition Based on Stereo Vision," Master, Computer Science and Information Engineering, National Central University, Taiwan, 2010.
[53] 鄭琇文. (2009). 科技始於人性 徹底顛覆人機介面Canesta讓手勢即可操控電視夢想得以實現. Available: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=13&Cat=&Cat1=&id=12680
[54] Y. C. Chen and C. C. Teng, "A Model-Reference Control-Structure Using a Fuzzy Neural-Network," Fuzzy Sets and Systems, vol. 73, pp. 291-312, Aug 8 1995.
[55] F. J. Lin, W. J. Hwang, and R. J. Wai, "A supervisory fuzzy neural network control system for tracking periodic inputs," IEEE Transactions on Fuzzy Systems, vol. 7, pp. 41-52, Feb 1999.
[56] 林進燈. 類神經網路. Available: http://www.ecaa.ntu.edu.tw/weifang/LifeScience/FuzzyNeuro.html
[57] S. Apewokin, B. Valentine, D. Forsthoefel, L. Wills, S. Wills, and A. Gentile, Embedded Real-Time Surveillance Using Multimodal Mean Background Modeling, 2009.
指導教授 陳慶瀚(Chin-han Chen) 審核日期 2013-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明