博碩士論文 985402004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.148.108.192
姓名 黃正達(Cheng-Ta Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 植基於可回復資訊隱藏上向量量化編碼數位影像之研究
(The Study of Reversible Data Hiding based on Vector Quantization in Digital Images)
相關論文
★ 以伸展樹為基礎的Android Binder Driver★ 應用增量式學習於多種農作物判釋之研究
★ 應用分類重建學習偵測航照圖幅中的新穎坵塊★ 用於輔助工業零件辨識之尺寸估算系統
★ 使用無紋理之3D CAD工業零件模型結合長度檢測實現細粒度真實工業零件影像分類★ 一個建立在平行工作系統上的動態全球計算平台
★ 用權重參照計數演算法執行主動物件垃圾收集★ 一個動態負載平衡之最大可能性估算計算架構
★ 利用多項系統負載資訊進行動態P2P系統重組的策略研究★ 基於Hadoop系統的雲端應用程式特徵擷取與計算監測架構
★ 適用於大型動態分散式系統的調適性計算模型★ 一個提供彈性虛擬資料中心的雲端服務平台
★ 雲端彈性虛擬機房服務平台之資源控管中心★ 一個適用於自動供應雲端系統的動態調適計算架構
★ 線性相關工作與非相關工作的探索式排程策略★ 適用於大資料集高效率的分散式階層分群演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 資料隱藏(Data Hiding)的技術可以隱藏資料於載體內,來達到通訊保護之目的。因此它提供一個安全方式,使得機密資料可以在公開或開放的管道中傳遞。向量量化編碼(VQ)的資料隱藏技術是影像資料隱藏的其中一種方式,它透過向量量化編碼技術將資料嵌入偽裝的影像中,因此可以避免秘密通訊被第三者攔截。而這類型技術的特點是進行通訊的雙方都需要透過同一本編碼簿,才能正確的對訊息編碼與解碼。向量量化編碼的資料隱藏技術可以是「向量量化編碼可回復」(VQ-Oriented Reversible),而這種技術可以將偽裝影像還原到原始影像的向量量化的形式。從過去相關文獻來看,向量量化編碼可回復資訊隱藏技術進行的研究可以分成兩部分:以編碼串為輸出的技術以及以影像為輸出的方式。
本論文在這兩方面都提出新的技術來改善向量量化編碼可回復資訊隱藏技術的效能。論文第一部分是針對編碼串為輸出的技術進行研究探討,而本論文所提出的ASCM方法的貢獻在於它比現有的技術具備更高的壓縮率以及更高的藏量。論文第二部分是針對影像為輸出的技術進行研究探討,而本論文在這方面共提出兩種方法:Two-level coding方法與Greedy-USBIRDS方法。其中Two-level coding 有較好的資訊藏量而Greedy-USBIRDS有較好的偽裝影像品質與不錯的資訊藏量。第二部分的貢獻在於,本論文所提出的方法比現有方法有更高的偽裝影像品質,同時也具備高資訊藏量。因此從實驗數據來分析比較本論文的研究成果與其它類似的方法的成果,我們發現本論文的研究成果在編碼串輸出的技術或是影像輸出的技術方面都具有重大的突破,編碼串壓縮率平均可以達到0.439,在影像品質平均可以高達37.27dB,且平均藏量可高達42萬位元。
摘要(英) Image data hiding is one of the most important techniques for data and communication protection. It embeds data into an image carrier and produce a corresponding stego-image that can then be decoded to obtain the hidden data. Therefore, it provides a secure way to distribute data through a public and open channel. VQ-based data hiding is an image data hiding technique that focuses on the problem of using a shared codebook between the message sender and the receiver to embed data into a cover image and to extract the hidden data from the stego-image. VQ-based data hiding methods can be VQ-oriented reversible, referring to the ability to recover the quantized cover image from the stego-image. VQ-based data hiding methods can be classified into two groups according to their outputs: codestream as the output and image as the output.
This dissertation has made contributions to both groups of the VQ-based data hiding methods. First, this dissertation presents a new method called ASCM that uses codestream as the output. It achieves better compression rate and higher embedding rate than prior similar approaches. Second, this dissertation presents two steganographic methods, the two-level embedding method and the greedy-USBIRDS method, which use images as their outputs. The former method achieves larger embedding capacity than the later method, and the later method achieves better stego-image quality with good embedding capacity. When compared with prior similar methods, both the proposed methods achieve better visual quality and larger embedding capacity on average. The experimental results indicate that, the proposed methods in this dissertation make significant contributions to the area of VQ-based steganographic methods in terms of applicable measures such as the stego-image quality (PSNR: ~37.2dB with embedding capacity: 423,283 bits), the ability to handle complex cover images, and the compression rate (Bit rate: ~0.439).
關鍵字(中) ★ 可回復資訊隱藏
★ 向量量化編碼
★ 邊緣向量量化編碼
★ 偽裝學
關鍵字(英) ★ Reversible data hiding
★ Vector quantization
★ Side-match vector quantization
★ Steganography
論文目次 中文摘要 iv
ABSTRACT v
Table of Contents vii
List of Figures ix
List of Tables xi
List of Algorithms xiii
Chapter 1 Introduction 1
1-1 Research Motivation 1
1-2 Research Backgrounds 3
1-3 VQ-based Image Coding System 3
1-4 Classification of VQ-Based Data-Hiding Methods 6
1-5 Define Some Important Factors to Evaluate the Performance and Test Images in VQ-based Data Hiding Methods. 8
1-6 Contributions of Dissertation 11
1-7 Organization of Dissertation 11
Chapter 2 Literature Reviews 12
2-1 A Lossless Data Embedding Technique by Joint Neighboring Coding 12
2-2 Huffman-Code Strategies to improve MFCVQ-based Reversible Data Hiding 14
2-3 A Scheme of Reversible Information Hiding based on SMVQ 15
2-4 A New Steganographic Scheme based on VQ and SOC 16
2-5 Steganography Scheme based on Side Match Vector Quantization 17
Chapter 3 Data Embedding for Vector Quantization Image Processing on the Basis of Adjoining State-Codebook Mapping 20
3-1 Adjoining State-Codebook Mapping 20
3-2 Data Embedding Algorithm 22
3-3 Data Extraction Algorithm 26
3-4 Experimental results and analyses 28
3-5 Summary 36
Chapter 4 Steganographic Image of VQ-transformation Using Two-Level Encoding with Varied LSB Replacements 37
4-1 VQ Transformation 38
4-2 Two-Level Encoding 39
4-3 Quality and Undetectability Considerations 40
4-4 Image Repairing and Adaptive Quality Control 41
4-5 Secret Data Embedding and Extracting 42
4-6 Experimental Results and Analyses 45
4-7 Summary 53
Chapter 5 Greedy-USBIRDS: A Greedy Steganographic Algorithm Using Secret Bits for Image-Block Repairing Based on Differences under SMVQ 55
5-1 Concept of the Proposed Greedy-USBIRDS Method 55
5-2 Image Repairing Using Secret Bits 56
5-3 Block-Level Embedding and Reversibility Checking 59
5-4 Embedding and Extracting 61
5-5 An Example of the Proposed Greedy-USBIRDS Method 65
5-6 Experimental Results and Analyses 66
5-7 Summary 72
Chapter 6 Conclusions and Future Works 74
Bibliography 77
參考文獻 [1] TrendLabs, “2009s most persistent malware threats,” Trend Micro, Incorporated, 2010.
[2] Arbor Networks, “Worldwide infrastructure security report,” Available at: http://www.arbornetworks.com/research/infrastructure-security-report. (Accessed: 2013).
[3] X.P. Zhang, K. Li, and X. Wang, “A novel look-up table design method for data hiding with reduced distortion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 6, pp. 769–776, 2008.
[4] F. Cayre and P. Bas, “Kerckhoffs-based embedding security classes for WOA data hiding,” IEEE Transactions on Information Forensics and Security, vol. 3, no. 1, pp. 1–15, 2008.
[5] L. Perez-Freire and F. Perez-Gonzalez, “Security of lattice-based data hiding against the watermarked-only attack,” IEEE Transactions on Information Forensics and Security, vol. 3, no. 4, pp. 593–610, 2008.
[6] O. Bulan, G. Sharma, and V. Monga, “Orientation modulation for data hiding in clustered-dot halftone prints,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2070–2084, 2010.
[7] N. Liu, P. Amin, and K. P. Subbalakshmi, “Security and robustness enhancement for image data hiding,” IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 466–474, 2007.
[8] K.S. Wong, K. Tanaka, K. Takagi, and Y. Nakajima, “Complete video quality-preserving data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 10, pp. 1499–1512, 2009.
[9] N. I. Wu, K. C. Fu, and C. M. Wang, “A novel data hiding method for grayscale images based on pixel-value differencing and modulus function,” Journal of Internet Technology, vol. 11, no. 7, pp. 1071–1082, 2010.
[10] W.C. Hsieh, N.I. Wu, and C.M. Wang, “A novel data hiding scheme for binary images with low distortion,” Journal of Internet Technology, vol. 11, no. 7, pp. 1057–1070, 2010.
[11] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image steganography: Survey and analysis of current methods,” Signal Processing, vol. 90, no. 3, pp. 727–752, 2010.
[12] H.C. Wu, H.C. Wang, C.S Tsai, and C.M. Wang, “Reversible image steganographic scheme via predictive coding,” Displays, vol. 31, no. 1, pp. 35–43, 2010.
[13] C.H. Yang, C.Y. Weng, S.J. Wang, and H.M. Sun, “Varied PVD + LSB evading detection programs to spatial domain in data embedding systems,” Journal of Systems and Software, vol. 83, no. 10, pp. 1635–1643, 2010.
[14] C.H. Huang, S.C. Chuang, and J.L. Wu, “Digital-invisible-ink data hiding based on spread-spectrum and quantization techniques,” IEEE Transactions on Multimedia, vol. 10, no. 4, pp. 557–569, 2008.
[15] Y.M. Cheng and C.M. Wang, “A novel approach to steganography in high- dynamic-range images,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 70–80, 2009.
[16] L. Zhang, H. Wang, and R. Wu, “A high-capacity steganography scheme for JPEG2000 baseline system,” IEEE Transactions on Image Processing, vol. 18, no. 8, pp. 1797–1803, 2009.
[17] W. Luo, F. Huang, and J. Huang, “Edge adaptive image steganography based on LSB matching revisited,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 201–214, 2010.
[18] M. Gkizeli, D.A. Pados, and M.J. Medley, “Optimal signature design for spread-spectrum steganography,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 391–405, 2007.
[19] X. Li and J. Wang, “A steganographic method based upon JPEG and particle swarm optimization algorithm,” Information Sciences, vol. 177, no. 15, pp. 3099–3109, 2007.
[20] A. Sarkar, U. Madhow, and B. S. Manjunath, “Matrix embedding with pseudorandom coefficient selection and error correction for robust and secure steganography,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 225–239, 2010.
[21] S.S.M. Chow and W.S. Yap, “Partial decryption attacks in security-mediated certificateless encryption,” IET Information Security, vol. 3, no. 4, pp. 148–151, 2009.
[22] J. Zhou, O.C. Au, and H.W. Wong, “Adaptive chosen-ciphertext attack on secure arithmetic coding,” IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 1825–1838, 2009.
[23] P. Tsai, “Histogram-based reversible data hiding for vector quantisation-compressed images,” IET Image Processing, vol. 3, no. 2, pp. 100–114, 2009.
[24] C.H. Yang and M.H. Tsai, “Improving histogram-based reversible data hiding by interleaving predictions,” IET Image Processing, vol. 4, no. 4, pp. 223–234, 2010.
[25] C.K. Chan and L.M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, vol. 37, no. 3, pp. 469–474, 2004.
[26] R.Z. Wang, C.F. Lin, and J.C. Lin, “Image hiding by optimal LSB substitution and genetic algorithm,” Pattern Recognition, vol. 34, no. 3, pp. 671–683, 2001.
[27] J. Wang, Y. Sun, H. Xu, K. Chen, H. J. Kim, and S. H. Joo, “An improved section-wise exploiting modification direction method,” Signal Processing, vol. 90, no. 11, pp. 2954–2964, 2010.
[28] H.M. Sun, C.Y. Weng, C.F. Lee, and C.H. Yang, “Anti-forensics with steganographic data embedding in digital images,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 7, pp. 1392–1403, 2011.
[29] C.H. Yang, C.Y. Weng, H.K. Tso, and S.J. Wang, “A data hiding scheme using the varieties of pixel-value differencing in multimedia images,” Journal of Systems and Software, vol. 84, no. 4, pp. 669–678, 2011.
[30] C.H. Hsieh and J.C. Tsai, “Lossless compression of VQ index with search-order coding,” IEEE Transactions on Image Processing, vol. 5, no. 11, pp. 1579–1582, 1996.
[31] C.C. Chang and W.C. Wu, “A reversible information hiding scheme based on vector quantization,” Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, vol. 3683, 2005.
[32] D.C. Lou, C.L. Chou, H.K. Tso, and C.C. Chiu, “Active steganalysis for histogram-shifting based reversible data hiding,” Optics Communications, vol. 285, no. 10–11, pp. 2510–2518, 2012.
[33] J. Fridrich, M. Goljan, and R. Du, “Reliable detection of LSB steganography in color and grayscale images,” in Proceedings of the 2001 workshop on Multimedia and security: new challenges, New York, NY, USA, 2001, pp. 27–30.
[34] Guillermito, “Steganography: A few tools to discover hidden data,” http://guillermito2.net/stegano/tools/index.html, 2004.
[35] R. Cogranne and F. Retraint, “An Asymptotically Uniformly Most Powerful Test for LSB Matching Detection,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 3, pp. 464 –476, Mar. 2013.
[36] X. Zhang and S. Wang, “Vulnerability of pixel-value differencing steganography to histogram analysis and modification for enhanced security,” Pattern Recogn. Lett., vol. 25, no. 3, pp. 331–339, Feb. 2004.
[37] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–95, 1980.
[38] C.C. Chen and C.C. Chang, “High capacity SMVQ-based hiding scheme using adaptive index,” Signal Processing, vol. 90, no. 7, pp. 2141–2149, 2010.
[39] C.C. Chang and C.Y. Lin, “Reversible steganography for VQ-compressed images using side matching and relocation,” IEEE Transactions on Information Forensics and Security, vol. 1, no. 4, pp. 493–501, 2006.
[40] C.C. Chang, W.L. Tai, and C.C. Lin, “A reversible data hiding scheme based on side match vector quantization,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 10, pp. 1301–1308, 2006.
[41] Y.C. Hu, “High-capacity image hiding scheme based on vector quantization,” Pattern Recognition, vol. 39, no. 9, pp. 1715–1724, 2006.
[42] S.C. Shie, S.D. Lin, and J.H. Jiang, “Visually imperceptible image hiding scheme based on vector quantization,” Information Processing & Management, vol. 46, no. 5, pp. 495–501, 2010.
[43] W.C. Du and W.J. Hsu, “Adaptive data hiding based on VQ compressed images,” IEE Proceedings Vision, Image & Signal Processing, vol. 150, no. 4, pp. 233–238, 2003.
[44] C.C. Chang and W.C. Wu, “Hiding secret data adaptively in vector quantisation index tables,” IEE Proceedings Vision, Image & Signal Processing, vol. 153, no. 5, pp. 589–597, 2006.
[45] C.C. Lin, S.C. Chen, and N.L. Hsueh, “Adaptive embedding techniques for VQ-compressed images,” Information Sciences, vol. 179, no. 1–2, pp. 140–149, 2009.
[46] C. C. Lee, W. H. Ku, and S. Y. Huang, “A new steganographic scheme based on vector quantisation and search-order coding,” IET Image Process., vol. 3, no. 4, pp. 243–248, 2009.
[47] J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Processing, vol. 20, no. 5, pp. 1408–1423, 2010.
[48] C.H. Yang and Y.C. Lin, “Fractal curves to improve the reversible data embedding for VQ-indexes based on locally adaptive coding,” Journal of Visual Communication and Image Representation, vol. 21, no. 4, pp. 334–342, 2010.
[49] C.H. Yang and Y.C. Lin, “Reversible data hiding of a VQ index table based on referred counts,” Journal of Visual Communication and Image Representation, vol. 20, no. 6, pp. 399–407, 2009.
[50] Z. M. Lu, J. X. Wang, and B. B. Liu, “An improved lossless data hiding scheme based on image VQ-index residual value coding,” Journal of Systems and Software, vol. 82, no. 6, pp. 1016–1024, 2009.
[51] S.C. Shie and S.D. Lin, “Data hiding based on compressed VQ indices of images,” Computer Standards & Interfaces, vol. 31, no. 6, pp. 1143–1149, 2009.
[52] J. X. Wang and Z. M. Lu, “A path optional lossless data hiding scheme based on VQ joint neighboring coding,” Information Sciences, vol. 179, no. 19, pp. 3332–3348, 2009.
[53] Z.H. Wang, C.C. Chang, K.N. Chen, and M.C. Li, “An encoding method for both image compression and data lossless information hiding,” Journal of Systems and Software, vol. 83, no. 11, pp. 2073–2082, 2010.
[54] L.S. Chen and J.C. Lin, “Steganography scheme based on side match vector quantization,” Optical Engineering, vol. 49, no. 3, pp. 0370081–0370087, 2010.
[55] W. J. Chen and W. T. Huang, “VQ indexes compression and information hiding using hybrid lossless index coding,” Digital Signal Processing, vol. 19, no. 3, pp. 433–443, 2009.
[56] C. F. Lee, H. L. Chen, and S. H. Lai, “An adaptive data hiding scheme with high embedding capacity and visual image quality based on SMVQ prediction through classification codebooks,” Image and Vision Computing, vol. 28, no. 8, pp. 1293–1302, 2010.
[57] C. C. Chang, T. D. Kieu, and W. C. Wu, “A lossless data embedding technique by joint neighboring coding,” Pattern Recognition, vol. 42, no. 7, pp. 1597–1603, 2009.
[58] C.H. Yang, S.C. Wu, S.C. Huang, and Y.K. Lin, “Huffman-code strategies to improve MFCVQ-based reversible data hiding for VQ indexes,” Journal of Systems and Software, vol. 84, no. 3, pp. 388–396, 2011.
[59] C.T. Huang, W.J. Wang, C.H. Yang, and S.J. Wang, “A scheme of reversible information hiding based on SMVQ,” The Imaging Science Journal, vol. 61, no. 2, pp. 195-203, 2013.
[60] P. Bas and T. Furon, “BOWS-2,” http://bows2.ec-lille.fr/, 2007.
[61] L. Fillatre, “Adaptive steganalysis of least significant bit replacement in grayscale natural images,” IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 556 –569, 2012.
指導教授 王尉任(Wei-Jen Wang) 審核日期 2013-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明