博碩士論文 100522059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.32.95
姓名 簡翊帆(Yi-fan Jian)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計
(Traffic Flow Analysis at Night under Rain-drop Tampered Surveillance Camera)
相關論文
★ 影片指定對象臉部置換系統★ 以單一攝影機實現單指虛擬鍵盤之功能
★ 基於視覺的手寫軌跡注音符號組合辨識系統★ 利用動態貝氏網路在空照影像中進行車輛偵測
★ 以視訊為基礎之手寫簽名認證★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測
★ 影像中賦予信任等級的群眾切割★ 航空監控影像之區域切割與分類
★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 影像特徵點匹配應用於景點影像檢索★ 自動感興趣區域切割及遠距交通影像中的軌跡分析
★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測★ Analysis of the Performance of Different Classifiers for Cloud Detection Application
★ 全天空影像之雲追蹤與太陽遮蔽預測★ 在全天空影像中使用紋理特徵之雲分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 智慧型運輸系統正一步步改善精進,不侷限於原本的國道影像監控,許多新硬體的研發,更是便利了交通資訊的分析,新硬體與新技術值得鼓勵,以有別於影像分析的角度著手,取得各種不同類型的資料,不僅能豐富分析的內容,擴張分析的領域,也可以輔助固有的影像資訊,達到較佳的分析效果。但是硬體開發成本遠不能及於原有的設備上深入探究其價值,所以,本篇論文將不使用新工具,僅利用已經裝設好的國道影像監控系統,在節省成本的前提下,提高影像資訊的分析精度及廣度。
利用國道影像資料分析路段車流,已有許多人付諸實行,無論是在白天或是夜間,都有許多技術的支持,即使是在天氣狀況不佳,視野不明的情況下,如:雨霧干擾。也有許多學者致力於去除雜訊,還原影像內容。此篇論文最大的特點,就在於針對不同場景下的夜間國道影像資訊,藉由顯著區域的偵測,區塊的切割,找出有利於辨別清晰或遭受雨滴汙染影像的特徵,這裡使用了統計特徵,區塊強度特徵搭配主成分分析,以及曲波係數特徵,再利用貝式分類器或支持向量機將影像作第一步的分類。若為夜間清晰影像,則採取不同的技術來估計路段車流量。反之,則進一步對受污染影像作分析,取出有用特徵,以支持向量回歸(SVR)的方式,推測出某個時間區間下經過的所有車輛數序列,進而切割序列,利用車輛數序列對應車輛數模組,推估出此路段的車流量。
本論文提出的方法架構無論在影片分類或是車流量分析都有不錯的效果,影片分類可達90%的準確度,而車流量分析誤差介於2%~3%之間,藉由估計各路段的車流量,可以即時得知路段的壅塞程度,對用路人是一大福音,每逢過年過節,國道塞車情況屢見不鮮,若將即時的分析結果與通訊裝置相配合,不僅能提供用路人由出發地至目的地的流暢行車路線,指引用路人往非壅塞路段行駛,提高各路段的平均使用率,也可作為政府實施交通管制的參考資訊。
摘要(英) In this thesis, we propose an intelligent highway surveillance application that could distinguish whether the scene is tampered by rain-drop or not and provide solutions to analyze the traffic flow under challenging rain-drop tampered conditions. There are existing methods to do traffic flow analysis in daytime and nighttime, but very few methods can deal with the conditions when the view is unclear. In the proposed system, we aim at dealing with the raining conditions at night. To deal with the difficult scenes, we extract some effective features instead of performing rain removal. We separate the system into two important parts. In the first part, we perform salient region detection and segmentation. We extract three kinds of features, including statistical features with feature selection, block intensity features with principal component analysis, and curvelet coefficients. After feature extraction, we use support vector machine and normal Bayesian classifier to do classification. In the second part, we use the same statistical features as in the first part to analyze traffic flow. We extract statistical features in detection region, and conduct support vector regression to get an estimated vehicle number for each frame. We propose a mapping model from the vehicle number sequence acquired in a number of frames to per minute traffic flow. The model depends on two factors, the length of the vehicle number sequence and the state transfer likelihood. The accuracy of traffic flow analysis is about 98%, demonstrating the proposed system is effective to analyze traffic flow at night under rain-drop tampered highway surveillance cameras.
關鍵字(中) ★ 車流量估計
★ 曲波
★ 主成分分析
★ 貝式分類器
★ 支持向量機
★ 坎尼邊緣檢測
★ 顯著區域偵測
關鍵字(英) ★ traffic flow analysis
★ curvelet
★ principle component analysis
★ Bayesian classifier
★ support vector machine
★ SVR
★ canny edge detector
★ salient region detection
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 5
1.3 系統流程 7
1.4 論文架構 10
第二章 相關文獻 11
2.1 坎尼邊緣檢測[CANNY EDGE DETECTOR] 11
2.2 顯著區域偵測[SALIENT REGION DETECTOR] 15
2.3 曲波轉換[CURVELET TRANSFORM] 16
2.4 主成分分析[PRINCIPLE COMPONENT ANALYSIS (PCA)] 19
2.5 貝式分類器[NORMAL BAYESIAN CLASSIFIER] 22
2.6 支持向量機[SUPPORT VECTOR MACHINE(SVM) / REGRESSION(SVR)] 24
第三章 夜間雨滴破壞影片之車流量估計 29
3.1 夜間受雨滴破壞影片之分類 30
3.1.1 顯著區域偵測[Salient Region Detection] 31
3.1.2 區塊分割[Blocks Segmentation] 33
3.1.3 特徵擷取[Feature Extraction] 37
3.1.3.1 統計特徵[Statistical values feature] 37
3.1.3.2 區塊強度搭配主成分分析[block intensity + PCA] 41
3.1.3.3 曲波係數特徵[Curvelet Coefficients feature] 43
3.1.4 分類[Classification] 44
3.1.3.4 貝式分類器[Normal Bayesian Classifier] 48
3.1.3.5 支持向量機[Support Vector Machine(SVM)] 48
3.2 估計夜間雨滴破壞影片的車流量 49
3.2.1 選取車流偵測區域[ROI Selection] 49
3.2.2 於車流偵測區域擷取統計特徵[Statistical Feature Extraction in ROI] 50
3.2.3 支持向量回歸[Support Vector Regression(SVR)] 51
3.2.4 車輛數序列對應車輛數模型[Vehicle Number Sequence Mapping Model] 52
第四章 實驗結果與分析 60
4.1 實驗環境與實驗資料 60
4.2 夜間受雨滴破壞影片之分類結果 61
4.3 夜間受雨滴破壞影片之車流量估計結果 65
第五章 結論與未來研究方向 70
參考文獻 72
參考文獻 [1] José M. Álvarez and Antonio M. ´Lopez, “Road Detection Based on Illuminant Invariance”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[2] Raghuraman Gopalan, Tsai Hong, Michael Shneier, and Rama Chellappa, “A Learning Approach Towards Detection and Tracking of Lane Markings”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[3] Jesmin F. Khan, Sharif M. A. Bhuiyan, and Reza R. Adhami, “Image Segmentation and Shape Analysis for Road-Sign Detection”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[4] Jack Greenhalgh and Majid Mirmehdi, “Real-Time Detection and Recognition of Road Traffic Signs”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[5] Ke Lu, Zhengming Ding, and Sam Ge, “Sparse-Representation-Based Graph Embedding for Traffic Sign Recognition”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[6] Andreas Møgelmose, Mohan Manubhai Trivedi, and Thomas B. Moeslund, “Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[7] Christos Nikolaos E. Anagnostopoulos, Ioannis E. Anagnostopoulos, Vassili Loumos, and Eleftherios Kayafas, “A License Plate-Recognition Algorithm for Intelligent Transportation System Applications”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2006
[8] Ying Wen, Yue Lu, Jingqi Yan, Zhenyu Zhou, Karen M. von Deneen, and Pengfei Shi, “An Algorithm for License Plate Recognition Applied to Intelligent Transportation System”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[9] Christos-Nikolaos E. Anagnostopoulos, Ioannis E. Anagnostopoulos, Ioannis D. Psoroulas, Vassili Loumos, and Eleftherios Kayafas, “License Plate Recognition From Still Images and Video Sequences: A Survey”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2008
[10] Qixiang Ye, Jixiang Liang, and Jianbin Jiao, “Pedestrian Detection in Video Images via Error Correcting Output Code Classification of Manifold Subclasses”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[11] Min Wang, Hong Qiao, and Bo Zhang, “A New Algorithm for Robust Pedestrian Tracking Based on Manifold Learning and Feature Selection”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[12] Junping Zhang, Ben Tan, Fei Sha, and Li He, “Predicting Pedestrian Counts in Crowded Scenes With Rich and High-Dimensional Features”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[13] Niluthpol Chowdhury Mithun, Nafi Ur Rashid, and S. M. Mahbubur Rahman, “Detection and Classification of Vehicles From Video Using Multiple Time-Spatial Images”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[14] Durgaprasad Gangodkar, Padam Kumar, and Ankush Mittal, “Robust Segmentation of Moving Vehicles Under Complex Outdoor Conditions”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[15] Minkyu Cheon, Wonju Lee, Changyong Yoon, and Mignon Park, “Vision-Based Vehicle Detection System With Consideration of the Detecting Location”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[16] C. Y. Liu and N. H. C. Yung, “Scale-Adaptive Spatial Appearance Feature Density Approximation for Object Tracking”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[17] Amirali Jazayeri, Hongyuan Cai, Jiang Yu Zheng, and Mihran Tuceryan, “Vehicle Detection and Tracking in Car Video Based on Motion Model”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[18] Hsu-Yung Cheng, and Shih-Han Hsu, “Intelligent Highway Traffic Surveillance With Self-Diagnosis Abilities”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011
[19] N. Martel-Brisson and A. Zaccarin, “Learning and removing cast shadows
through a multidistribution approach”, in IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007
[20] Andrew H. S. Lai, and Nelson H. C. Yung, “Lane Detection by Orientation and Length Discrimination”, in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, 2000
[21]產業先進人才培育計畫-半導體及光電-自動化光學檢測-第六章邊緣偵測 http://140.130.15.147/%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%8F%8A%E5%85%89%E9%9B%BB/Course%20materials.htm
[22] JOHN CANNY, “A Computational Approach to Edge Detection”, in IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986
[23] 陳慶瀚:邊緣檢測 http://140.115.11.235/~chen/course/vision/ch6/ch6.htm
[24] Ming-Ming Cheng, Guo-Xin Zhang, Mitra, N.J., Xiaolei Huang and Shi-Min Hu, “Global Contrast based Salient Region Detection”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011
[25] Jianwei Ma, and Plonka, G., “The Curvelet Transform”, Signal Processing Magazine, IEEE, 2010
[26] Dengsheng Zhang, M. Monirul Islam, Guojun Lu, and Ishrat Jahan Sumana, “Rotation Invariant Curvelet Features for Region Based Image Retrieval”, International Journal of Computer Vision, 2012
[27] K.H. Esbensen, and P. Geladi, “Principal Component Analysis: Concept, Geometrical Interpretation, Mathematical Background, Algorithms, History, Practice”, Chemical and Biochemical Data Analysis, Elsevier, 2009
[28] 主成分分析 http://210.34.136.253:8488/MultiAnalysis/Chapter09.htm
[29] Principal Component Analysis: A Gentle Tutorial http://mirlab.org/jang/books/dcpr/doc/pca.pdf
[30] 貝氏分類器 http://mirlab.org/jang/books/dcpr/prBaysianClassifier.asp?title=5-7%20%A8%A9%A6%A1%A4%C0%C3%FE%BE%B9
[31] Biano, Support Vector Machine簡介 http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM3.pdf
[32] Christopher J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, 1998
[33] Alex J. Smola, and Bernhard Schölkopf, “A tutorial on support vector regression ”, Statistics and Computing, Springer, 2004
[34] Support Vector Machine - Regression (SVR) http://www.saedsayad.com/support_vector_machine_reg.htm
[35] Daniel J. Sebald, and James A. Bucklew, “Support Vector Machine Techniques for Nonlinear Equalization”, in IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000
[36] MJ Fadili, and JL Starck, “Curvelets and Ridgelets”, Encyclopedia of Complexity and Systems Science, Springer, 2007
[37] Ye Li, Bo Li, Bin Tian, and Qingming Yao, “Vehicle Detection Based on the AND–OR Graph for Congested Traffic Conditions”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013
[38] Luis Unzueta, Marcos Nieto, Andoni Cortés, Javier Barandiaran, Oihana Otaegui, and Pedro Sánchez, “Adaptive Multicue Background Subtraction for Robust Vehicle Counting and Classification”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[39] Yen-Lin Chen, Bing-Fei Wu, Hao-Yu Huang, and Chung-Jui Fan, “A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance”, in IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011
[40] Wei Zhang, Q. M. J. Wu, Guanghui Wang, and Xinge You, “Tracking and Pairing Vehicle Headlight in Night Scenes”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012
[41] A Library for Support Vector Machines (libSVM) http://www.csie.ntu.edu.tw/~cjlin/libsvm/
指導教授 鄭旭詠(Hsu-yung Cheng) 審核日期 2013-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明