參考文獻 |
[1] Fayyad, U., Shapiro, g. P., Smyth, P., 1996. From data mining to knowledge discovery in databases, AI Magazine, 17(3):37-54.
[2] Frawley, W. J., Piatetski-Shapiro, G., Matheus, C. J., 1991. Knowledge Discovery in Databases: An Overview, AAAI-MIT Press, Menlo Park, California.
[3] Hand, D., Mannila, H., Smyth, P., 2001. Principles of data mining, Adaptive Computation and Machine Learning Series.
[4] Cios, K. J., Kurgan, L. A., 2002. Trends in Data Mining and Knowledge Discovery. In: Knowledge discovery in advanced information systems, Pal, N.R., Jain, LPal, N.R.. C., Teoderesku N. (eds.), Springer.
[5]Wanyande, Peter et al., 1997. History and Government., PETER, PROF. WANYANDE, Longhorn, Kenya.,
[6] Ader, H. J., Mellenbergh, G. J., Hand, D. J., 2008. Advising on Research Methods: A consultant’s Companion. Huizen, The Netherlands: Johannes van Kessel.
[7] Kurgan, L. A., Cios, K. J., 2004. CAIM Discretization Algorithm. IEEE Transactions on Data and Knowledge Engineering, 16(2):145-153.
[8] Kamakshi Lakshminarayan, Steven A. Harp, Tariq Samad, 1999. Imputation of Missing Data in Industrial Databases, Appl. Intell, 11(3): 259-275
[9] Fayyad, U. M., Shapiro, G. P., Smyth, P., 1996. The KDD Process for Extracting Useful Knowledge from Volumes of Data, Communications of the ACM, Vol. 39, No. 11, 1996, pp. 27-34.
[10] Han, J. and Kamber, M., 2001. Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers.
[11] Allison, P. D., 2001. Missing Data Thousand Oaks, CA: Sage Publications.
[12] Landerman, Lawrence R., Kenneth C. Land and Carl F. Pieper, 1997. An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values, Sociological Methods & Research 26: 3-33.
[13] Batista, G. E. A. P. A., Monard, M. C., 2003, An analysis of four missing data treatment methods for supervised learning, Applied Articial Intelligence, 17(5-6): 519-533.
[14] Pei Y-F, Li J, Zhang L, Papasian CJ, Deng H-W., 2008. Analyses and comparison of accuracy of different genotype imputation methods, PLoS One, 3(10):e3551.
[15] Zhang, S., Jin, Z., Zhu, X., 2011. Missing data imputation by utilizing information within incomplete instances, The Journal of Systems and Software, 84(3): 452-459.
[16]Acuna E., Rodriguez C. A., 2004. Meta analysis study of outlier detection methods in classification, In proceedings IPSI.
[17]Batista, G., Monard, M., 2003. An Analysis of Four Missing Data Treatment Methods for Supervised Learning, Applied Artificial Intelligence, 17(5-6): 519-533.
[18] Alireza Farhangfar, Lukasz Kurgan, Jennifer Dy, 2008. Impact of imputation of missing values on classification error for discrete data, Pattern Recognition 41:3692 – 3705.
[19] Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517.
[20] Ma, S., Huang, J., 2008. Penalized feature selection and classification in bioinformatics, Briefings in Bioinformatics 9(5): 392–403.
[21] Hilario, M., Kalousis, A., 2008. Approaches to dimensionality reduction in proteomic biomarker studies, Briefings in Bioinformatics 9(2):102–118.
[22] Duval, B., Hao, J., 2010. Advances in metaheuristics for gene selection and classification of microarray data, Briefings in Bioinformatics, 11(1):127–141.
[23] Olvera-López, J. A., Carrasco-Ochoa, J. A., Martinez-Trinidad, J. F., Kittler, J., 2010. A review of instance selection methods, Artif. Intell. Rev., 34(2):133-143.
[24] Per Jonsson, Claes Wohlin, 2004. An Evaluation of kNearest Neighbour Imputation Using Likert Data, Proceedings of the 10th International Symposium on Software Metrics, Chicago, IL, (USA), pp. 108 – 118.
[25] Pyle D, 1999. Data Preparation for data mining, Morgan Kaufmann, San Mateo, p540
[26] Mistiaen, Johan A., Ravallion, Martin, 2003. Survey compliance and the distribution of income, Policy Research Working Paper Series 2956, The World Bank.
[27] Cohen, J., Cohen, P., 1983. Applied multiple regression/correlation analysis for the behavioral sciences, Hillsdale, NJ: Erlbaum.
[28] Little, R. J. A., Rubin, D. B., 1987. Statistical analysis with missing data, New York, Wiley.
[29] Little, R. J. A., Rubin, D. B., 2002. Statistical Analysis with Missing Data, New York, John Wiley.
[30]Kalton, G., Kasprzyk, D., 1982. Imputing for missing survey responses, Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 22–31.
[31] Schafer, J. L., Olsen, M. K., 1998. Multiple imputation for multivariate missing-data problems: a data analyst’s perspective, Multivariate Behavioral Research, 33, 545-571.
[32] Batista, G. and Monard, M., 2003. An Analysis of Four Missing Data Treatment Methods for Supervised Learning, Applied Artificial Intelligence, 17(5-6): 519-533.
[33] Schafer. J. L. and Graham, J. W., 2002. Missing data: Our view of the state of the art, Psychological Methods, 7 (2), 147-177.
[34] Zhu X., Zhang S., Senior Member, IEEE, Jin Z., Senior Member, IEEE, Zhang Z., and Xu Z., 2011. Missing Value Estimation for Mixed-Attribute Data Sets IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1.
[35] Zhang S., 2012. Nearest neighbor selection for iteratively kNN imputation. Journal of Systems and Software, 85(11):2541-2552.
[36] Ronald K. Pearson, 2006. The problem of disguised missing data, ACM SIGKDD Explorations Newsletter, v.8 n.1, p.83-92.
[37] Hawthorne, G. and Elliott, P., 2005. Imputing cross-sectional missing data: Comparison of common techniques, Australian and New Zealand Journal of Psychiatry, 39(7), 583-590.
[38] Tabachnick, B. G., and Fidell, L. S., 1983. Using multivariate statistics. New York: Harper & Row. (Chapter 9; more recent editions are available)
[39] Schafer. J. L. and Graham, J. W., 2002. Missing data: Our view of the state of the art, Psychological Methods, 7 (2), 147-177.
[40] Landerman, Lawrence R., Kenneth C. Land and Carl F. Pieper, 1997. An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values, Sociological Methods & Research 26: 3-33.
[41] Acock, A.C., 2005. Working with Missing Data. Journal of Marriage and Family, 67, 1012-1028.
[42] Rubin, D. B., 1987. Multiple Imputation for Nonresponse in Surveys, New York: John Wiley & Sons, Inc.
[43] Tanner, M. A. and Wong, W. H., 1987. The calculation of posterior distributions by data augmentation (with discussion), J. Amer. Statist. Assoc. 82 528–550.
[44] Lisa A. C. and Daniel H. K., 2007. Childhood Family, Ethnicity, and Drug Use Over the Life Course Journal of Marriage and Family 69(3):810–830.
[45] Freeman, Vicki A., Douglas A., Wolf, 1995. A case-study on the use of multiple imputation, Demography 32: 459-470.
[46] Little, Roderick J. A. and Donald B. Rubin, 1989. The Analysis of Social Science Data with Missing Values, Sociological Methods and Research 18: 292-326.
[47] Shafer J.L., 1997. Analysis of incomplete multivariate data, 430 pp., ISBN 0-412-04061-1
[48] Fix, E., Hodges, J.L., 1951. Discriminatory analysis, nonparametric discrimination: Consistency properties, Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas.
[49] CHO, S. B., 2002. Towards Creative evolutionary Systems with Interactive Genetic Algorithm, Applied Intelligence, 16(2): 129-138.
[50] Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.
[51] Jönsson P. and Wohlin C., 2006. Benchmarking k-Nearest Neighbour Imputation with Homogeneous Likert Data, Empirical Software Engineering: An International Journal, Vol. 11, No. 3, pp. 463-489.
[52] Batista, G. E. A. P. A. and Monard, M. C., 2003. An analysis of four missing data treatment methods for supervised learning, Applied Arti¯cial Intelligence 17(5-6), 519{533.
[53]C.-T. Su and C.-H. Yang, 2008. Feature Selection for the SVM: An Application to Hypertension Diagnosis, Expert Systems with Applications, Vol. 34, No. 1, pp. 754-763.
[54]Rem, Olaf and Erik Darwinkel, 2002. The Concept Editor, [D12.4].
[55]A. W. Whitney., 1971. A direct method of nonparametric measurement selection, IEEE Trans. Computers, 20(9):1100–1103.
[56]XU Yang, LIU Jia, HU Qingmao, CHEN Zhijun, DU Xiaohua, HENG Pheng Ann,2008
[57]Y.W. Chen, C.J. Lin, 2006. Combining SVMs with Various Feature Selection Strategies, Feature Extraction and Applications, Springer-Verlag, Berlin,.
[58] Derrac, J., García, S., Herrera, F., 2010. A Survey on Evolutionary Instance Selection and Generation, International Journal of Applied Metaheuristic Computing 1(1):60-92.
[59] Hart PE, 1968. The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14, 1968, pp 515–516
[60] Baker, V. R., and Ritter, D. F., 1975. Competence of rivers to transport coarse bedload material: Geological Society of America, Bulletin, v. 86, p. 975–978.
[61] Gates, G. W., 1972. The Reduced Nearest Neighbor Rule, IEEE Transactions on Information Theory, Vol. IT-18, No. 3, pp. 431-433.
[62] Wilson,D.L., 1972. Asymptotic properties of nearest neighbor rules using edited data, IEEE Transactionson on Systems, Man and Cybernetics, vol. SMC-2,no.3,pp.408-421.
[63] N. Jankowski and M. Grochowski., 2004. Comparison of instances selection algorithms: I. Algorithms survey, In Artificial Intelligence and SoftComputing, Lecture notes in computer science, pages 598–603.
[64] Asa, D.W.,Kibler,D.,and Albert,M.K., 1991. Instance-Based Learning Algorithms, Machine Learning, vol.6, no. 1, pp. 37-66.
[65] Brightion,H. and Mellish,C., 2002. Advances in Instance Selection for Instance-Based Learning Algorithms, Data Mining and Knowledge Discovery, vol. 6, pp.153-172.
[66] Wison,D.R. and Martinez,T.R., 2000. Reduction Techniques for Instance-Based Learning Algorithms, Machine Learning, vol. 38, pp. 257-286.
[67] D. Fragoudis, D. Meretakis, S. Likothanassis, 2002. Integrating feature and instance selection for text classification, KDD: 501-506. |