博碩士論文 995201044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.226.82.32
姓名 楊善淇(Shan-chi Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於生理訊號擷取之低雜訊類比前端電路
(A Design of Low-noise Analog Frond-end Circuit for Bio-signal Acquisition)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著現代醫學的發達,可攜帶的生醫訊號量測裝置是目前的趨勢,我們希望病人可以攜帶輕巧的監控裝置並可長時間的監控生理狀態。近幾年來不同生醫應用層面的生理訊號量測系統發展趨向於微小化並搭配無線方式傳輸訊號。
本篇主旨為提出一應用於生醫訊號量測系統之低雜訊前端類比前端電路,可針對不同生醫訊號如腦波圖(Electroencephalography, EEG)、心電圖(Electrocardiography, ECG)訊號作記錄。為了將其中低頻的非理想如直流偏移電壓、閃爍雜訊等影響減小,並考量電路為on chip設計,我們設計一可調性虛擬電阻用來形成極低頻之極點,克服形成低頻極點需要大電阻的問題,並且改善製程變異與共模電壓的飄移。為了降低整體電路的功率消耗及減低熱雜訊,將放大器輸入級的場效電晶體操作於弱反轉區可以比電晶體操作在飽和區有更好的表現,整體電路以高解析度、低功耗及低雜訊為設計目標。
本文所提整體類比前端電路包含偏壓電路、可調式虛擬電阻、ac 耦合式帶通濾波器、共模回授電路。在電路實現上,在輸入訊號頻率1 kHz、150 μV輸入振幅下,整體放大器增益為72 dB,而在輸入訊號200 Hz,2 mV的輸入振幅下,放大器增益為58 dB,可調低頻截止點範圍為4 Hz到300 Hz,輸入相關雜訊為3.61 μVrms,整體總諧波失真為60.21 dB,雜訊效率因素(Noise efficiency factor)為4.7。搭配後端三角積分調變器出來的整體SNDR (Signal to Noise-Distortion Ratio)為65 dB,其有效位元數為10位元的解析度。我們使用台積電0.18 μm CMOS 1P6M製程,其晶片面積約佔0.68 mm2。在1.8 V電源供應下,整體晶片消耗之功率約為55 μW。
摘要(英) With the advances in modern medicine, portable bio-medical measurement device is the current trend. We hope that the patient can carry light device for a long time monitoring. In recent years, the bio-signal measurement devices for various bio-medical applications trend to be minimized and with wireless transmission capabilities.
This work presents a low noise analog-front-end circuit for bio-signal measurement system that can be used to record different bio-signal such as Electronencephalogram (EEG) and Electrocardiography (ECG) signals. When circuit operates at low frequencies, we need a tunable pseudo-resistor with a huge resistance to form a very low frequency pole to minimize the non-ideal effect such as DC-offset, flicker noise, and on chip design. Then, the pseudo-resistor can resolve process variation and DC-offset from electrode. In addition, in order to reduce the power consumption and thermal noise effect, the input stage MOS of the operation amplifier are designed to operate at the weak-inversion region and to get better performance than MOS operate in saturation. The AFE circuit is aiming at low power consumption, low-noise, and high resolution.
The whole AFE circuit includes a bias circuit, pseudo-resistor, ac coupling band-pass filter, and common-mode feedback circuit. When the input signal is 1 kHz sine wave with 150 μV amplitude, the AFE achieves mid-band gain of 72 dB, and when the input signal is 200 Hz sine wave with 2 mV amplitude, the AFE achieves mid-band gain of 58 dB. The programmable low-cutoff frequency ranges from 4 to 300 Hz; the input referred noise is 3.61 μVrms; and the THD is 60.2 dB. The circuit is fabricated in the TSMC 0.18-μm one-poly six metals CMOS process, and the chip area is 0.68 mm2. The simulated power consumption is about 55 μW for 1.8 V power supply.
關鍵字(中) ★ 虛擬電阻
★ 生理訊號放大器
★ 電流轉導式放大器
關鍵字(英) ★ pseudo-resistor
★ biomedical sensor interface
論文目次 摘要 ............................................................................................................................................ i
Abstract .................................................................................................................................... ii
致謝 .......................................................................................................................................... iii
目錄 .......................................................................................................................................... iv
圖目錄 ...................................................................................................................................... vi
表目錄 .................................................................................................................................... viii
第一章 緒論 ........................................................................................................................ 1
1.1 背景 ............................................................................................................................ 1
1.2 研究動機 .................................................................................................................... 3
1.3 論文架構 .................................................................................................................... 6
第二章 生醫訊號擷取考量 ................................................................................................ 7
2.1 生理訊號類別 ............................................................................................................ 7
2.2 動作電位的產生 ........................................................................................................ 9
2.3 生醫類比前端電路規格 .......................................................................................... 11
第三章 低雜訊生醫類比前端電路設計 .......................................................................... 13
3.1 低頻非理想效應 ...................................................................................................... 13
3.1.1 熱雜訊(Thermal Noise) .................................................................................... 13
3.1.2 閃爍雜訊 (Flicker Noise) ................................................................................. 15
3.1.3 電極直流漂移 (Electrode Dc Offset) .............................................................. 17
3.2 類比前端電路設計技術 .......................................................................................... 20
3.2.1 傳統式儀表放大器 .......................................................................................... 20
3.2.2 自動歸零技術(Auto-zero Technique) .............................................................. 22
3.2.3 截波穩定技術(Chopper Stabilization Technique, CHS) ................................... 24
3.2.4 積分負回授技術 .............................................................................................. 26
3.2.5 交流耦合技術 .................................................................................................. 27
v
3.3 弱反轉區特性 .......................................................................................................... 28
3.4 雜訊效能因素 .......................................................................................................... 34
第四章 頻寬/增益可調式低雜訊類比前端電路設計 ..................................................... 36
4.1 電路架構介紹 .......................................................................................................... 36
4.1.1 虛擬電阻雜訊分析與考量 .............................................................................. 36
4.1.2 電路雜訊與面積考量 ...................................................................................... 40
4.2 電路設計 .................................................................................................................. 42
4.2.1 運算轉導放大器設計 ...................................................................................... 42
4.2.2 共模回授電路設計 .......................................................................................... 47
4.2.3 改良式虛擬電阻設計 ...................................................................................... 50
4.2.4 偏壓電路設計 .................................................................................................. 52
4.2.5 可調增益電路設計 .......................................................................................... 54
4.3 電路總結 .................................................................................................................. 55
4.4 電路模擬結果 .......................................................................................................... 57
第五章 佈局與量測考量 .................................................................................................. 65
5.1 晶片佈局 .................................................................................................................. 65
5.2 量測考量 .................................................................................................................. 67
5.3 量測結果 .................................................................................................................. 69
5.4 量測總結 .................................................................................................................. 71
第六章 結論與未來展望 .................................................................................................. 73
6.1 結論 .......................................................................................................................... 73
6.2 未來展望 .................................................................................................................. 73
參考文獻 ................................................................................................................................. 74
參考文獻 [1] J. G. Webster, “Medical instrumentation application and design,” Canada: John Wiley
& Sons, Inc., 1998.
[2] M. F. Bear, B. W. Connors, and M. A. Paradiso, “Neuroscience: exploring the brain,”
Baltimore: Lippincott Williams & Williams Inc., 1996.
[3] K.D. Wise, “A multi-channel microprobe for biopotential recording,” Ph.D.
dissertation, Stanford, CA, 1969.
[4] Pedram Mohseni, “A low power fully integrated band-pass operational amplifier for
biomedical neural recording applications,” 2002.
[5] S. C. Lee, “Design of implantable wireless bidirectional SOC for biomedical
applications,” National Chung Cheng University, Oct. 2006.
[6] S. Kim, R. Normann, R. Harrison, “Preliminarystudy of the thermal impact of a
microelectrode array implanted in thebrain,” IEEE Engineering in Medicine Biology
Conf., Aug.30–Sep. 3, 2006, pp. 2986–2989.
[7] W. Wattanapanitch, M. Fee and R. Sarpeshkar, “An energy-efficient micro-power
neural recording amplifier,” IEEE Trans. On Biomed. Circuits and Syst., vol. 1, no. 2,
pp. 136-147, June 2007.
[8] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill,
2001.
[9] A. S. Sedra and K. C. Smith,“ Microelectronic circuit,” 5th ed. New York: Oxford,
Aug.2007.
75
[10] A. Harb and M. Sawan, “New low-power low-voltage high-cmrr cmos instrumentation
amplifier” Circuits and Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE
International Symposium.
[11] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-amp
imperfections: autozeroing, correlated double sampling, and chopper stabilization,”
Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[12] B. Gosselin, M. Sawan, C. A. Chapman, “A low-power integrated bioamplifier with
active low-frequency suppression,” IEEE Trans. Biomed., vol. 1, no. 3, pp. 184–192,
Jun. 2007.
[13] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural
recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun.
2003.
[14] R. H. Olsson, D. L. Buhl, and K. D. Wise, “Band-tunable and multiplexed integrated
circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE
Trans. Biomed. Eng., vol. 52, pp. 1303–1310, Jul. 2005.
[15] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and design of analog
integrated circuits,” New York: John Wiley & Sons, Inc., 2001.
[16] D. M. BINKLEY, B. J. BLALOCK, and J. M. ROCHELLE, “Optimizing drain
current, inversion level, and channel length in analog CMOS design,” Proc. Analog
Integrated Circuits and Signal, vol. 47, no. 2, pp. 137-163, May 2006.
[17] R. R. Harrison, “MOSFET Operation in weak and moderate inversion” University of
Utah
76
[18] T. M. Hollis, D. J. Comer, and D. T. Comer, “Optimization of MOS amplifier
performance through channel length and inversion level selection,” IEEE Trans. Circ.
Syst.-II: Express Briefs, vol. 52, no. 9, Sep. 2005.
[19] Enz, C.C., Krummenacher, F., and Vittoz, “An analytical MOS transistor model valid
in all regions of operation and dedicated to lowvoltage and low-current applications”
Analog Integr. Circuits Signal Process., 1995, 5, pp. 83–114.
[20] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable
Biomedical Sensor Interface Chip,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp.
1067–1077, Apr. 2009.
[21] E. C. M. Lim, X. D. Zou, Y. J Zheng, and J. Tan “Design of lowpower low-voltage
biomedical amplifier for electrocardiogram signal recording,”IEEE Biomedical
Circuits Syst. Conf., Montréal, Canada, 2007, pp. 191–194.
[22] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan,“A micropower low-noise
monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State
Circuits, vol. SC-22, pp. 1163–1168, Dec. 1987.
[23] R. JACOB BAKER, “CMOS Circuit Design, Layout, and Simulation ” 3th ed. New
York: John Wiley & Sons, Inc., 2010.
[24] V. Majidzadeh, A. Schmid, and Y. Leblebici,“Energy efficient low-noise neural
recording amplifier with enhanced noise efficiency factor,”IEEE Trans. Biomed.
Circuits Syst., vol. 5, no. 3, pp. 262–271, Jun.2011.
[25] Hamidreza Rezaee-Dehsorkh, “Analysis and Design of Tunable Amplifiers for
Implantable Neural Recording Applications,” IEEE JOURNAL ON EMERGING AND
SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 4, DECEMBER 2011.
77
[26] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni,“A battery-power
activity-dependent intracortical microstimulation IC for brain-machine-brain interface”
IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 731–745, Apr. 2011.
指導教授 薛木添 審核日期 2013-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明