博碩士論文 100323101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.21.158.224
姓名 李庭豪(Ting-hao Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁合金7075-T73原材與陽極處理封孔後的疲勞性質影響對微結構的研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討鋁合金7075-T73熱處理後利用15wt%硫酸溶液的陽極處理進行10-12μm的陽極膜厚度之後熱水封孔。將原材試棒和陽極處理試棒進行旋轉樑疲勞試驗,並觀察和比較不同應力振幅的試片微結構差異。而鋁合金7075-T73熱處理(原材)的試片,在基地中存在一些次晶粒及二次相顆粒的微結構的探討。
調查疲勞壽命的旋轉週數與應力振福的關係,比較7075-T73熱處理的原材和陽極處理封孔後的差異。原材的疲勞壽命為225MPa,而陽極處理封孔後的疲勞壽命為240MPa。利用電子背向散射(Electron back scattering diffraction;EBSD)實驗,發現原材在低取向差的角度晶界(low misorientation angle grain boundary)有顯著的增加(MAGB:<50),而陽極處理封孔後則是在高取向差的角度晶界(High misorientation angle grain boundary)有顯著的增加(MAGB:>150)。加以討論疲勞試驗後原材低取向差的角度以及陽極處理封孔後的高取向差的角度所造成的原因。
摘要(英) A set of 7075-T73 alloy samples was prepared for running anodization in a 15wt% sulfuric acid solution to coat 10-12 micron in thickness of anodic aluminum oxide (AAO) film and then sealed in hot water. The samples with/without AAO film were removed for carrying out rotating bending fatigue test. The microstructure of different samples was observed and compared. The 7075-T73 (bare) samples showed some subgrains in together with some amounts of intermetallic compound particles in the matrix.
Relations of number of cycles to failure versus stress amplitude were constructed for two sets of sample. The bare samples achieved fatigue limit (FL) at 225 MPa at 107 cycles and those with sealed AAO film yielded 240 MPa at 107 cycles. After electron back scattering diffraction (EBSD) pattern test, we found that the former samples showed an increased in the low misorientation angle grain boundary (MAGB:<5⁰) and the latter samples obtained a high fraction in the high MAGB (>15⁰) on the matrix of fractured sample. Reasons for increasing low MAGB in bare sample and for increasing high MAGB in anodized/sealed samples were discussed.
關鍵字(中) ★ 硫酸
★ 陽極處理
★ 旋轉樑疲勞試驗
★ 電子背向散射
★ 穿透式電子顯微鏡
★ 7075-T73
關鍵字(英) ★ Sulfuric acid
★ Anodization
★ Rotating bending fatigue test
★ EBSD
★ TEM
★ 7075-T73
論文目次 目錄
摘要 i
Abstract ii
圖目錄 v
表目錄 viii
第一章 前言 1
第二章 文獻回顧 2
2-1 鋁合金材料簡介 2
2-2 面心立方晶體結構(The Face-Centered Cubic (FCC) Crystal Structure) 2
2-3 鋁合金的分類 3
2-3-1 鍛造用鋁合金 3
2-3-2 鑄造用鋁合金 4
2-4 鍛造鋁合金 4
2-5 鋁合金熱處理技術 6
2-5-1 熱處理鋁合金加工代號 6
2-5-2 熱處理代號 7
2-6 鋁合金之析出硬化 7
2-7 7xxx系列鋁合金熱處理程序及析出強化機制 10
2-8 7xxx系Al-Zn-Mg鋁合金二階段時效處理及Cu的影響 23
2-9 疲勞破壞的原理及影響 24
2-9-1 疲勞破壞的過程 25
2-9-2 疲勞裂紋初始機構 26
2-9-3 疲勞裂紋成長機構 27
2-9-4 疲勞最終破壞 28
2-9-5 疲勞應力分析及旋轉樑試驗原理 34
2-10 7xxx系Al-Zn-Mg-(Cu)鋁合金熱處理之疲勞影響 36
2-11 7xxx系Al-Zn-Mg-(Cu)鋁合金表面處理之疲勞影響 42
2-12 動態再結晶(Dynamic Recrystallization) 47
2-13 動態回復(Dynamic recovery) 50
2-14 動態析出物對疲勞壽命的影響 53
第三章 實驗步驟 55
3-1 實驗材料 55
3-2 實驗儀器 55
3-3 實驗步驟 56
第四章 結果與討論 60
4-1 鋁合金7075-T73擠製圓棒的熱處理條件 60
4-1-1 退火熱處理 62
4-1-2 固溶及人工時效熱處理 64
4-2 鋁合金7075-T73擠製圓棒的微結構特徵 65
4-3 疲勞試驗後破斷面結果分析 67
4-3-1 鋁合金7075-T73的疲勞裂縫起始 67
4-3-2 鋁合金7075-T73陽極處理封孔後的疲勞裂縫起始 70
4-4 疲勞壽命預測 72
4-4-1 韋伯分布函數預測不同破壞機率下疲勞轉數 76
4-4-2 鋁合金7075-T73的疲勞壽命預測 77
4-4-3 鋁合金7075-T73陽極處理的疲勞壽命預測 83
4-5 EBSD技術應用分析疲勞試驗後的晶界角度變化 89
4-5-1 7075-T73的疲勞試驗後晶界角度變化 90
4-5-2 7075-T73陽極處理封孔後的疲勞試驗後晶界角度變化 91
4-6 析出物和差排對疲勞壽命的影響 99
第五章 結論 106
參考文獻 108
參考文獻 參考文獻
[1] 黃振賢﹐”機械材料”﹐文京圖書股份有限公司﹐新竹﹐民國69年﹐第311-331頁
[2] 賴耿陽﹐”非鐵金屬材料”﹐復漢出版社﹐台北﹐民國71年﹐第151~168頁
[3] Y.H. Zhaoa﹐X.Z. Liao a﹐Z. Jin b﹐R.Z. Valiev c﹐Y.T. Zhu a﹐ ” Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing” Acta Materialia﹐vol52﹐pp.4589-4599﹐2004
[4] S.K. Panigrahi﹐R. Jayaganthan, “Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling”, Materials and Design, vol.32, pp.3150-3160, 2011
[5] F. Viana, A. M. P. Pinto, H. M. C. Santos andA. B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of Materials Processing Technology, vol.92-93, pp.54-59, 1999
[6] J.J. Thompsom﹐E.S. Tankins﹐V.S.Agarwala﹐”A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloy”﹐Materials Performance, vol.26, pp.45-52, 1987
[7] J. R. Davis, ASM Specialty Handbook:Aluminum and Aluminum Alloys,ASM International, 1993
[8] Tang Jian-guo﹐Chen Hui﹐Zhang Xin-ming﹐Liu Sheng-dan﹐Liu Wen-jun﹐Ouyang Hui﹐Li Hong-ping “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”﹐Trans. Nonferrous Met. Soc. China﹐vol.22﹐pp1255-1263﹐ 2012

[9] Liu Sheng-dan﹐Zhang Xin-ming﹐Chen Ming-an ﹐You Jiang-hai﹐Zhang Xiao-yan, “Effect of Zr content on quench sensitivity of AlZnMgCu alloys”, Trans. Nonferrous Met. Soc. China, vol.17, pp.787-792, 2007
[10] J.K.Park, ”Influence of Retrogression and Reaging Treatments on the Strength and Stress corrosion Resistance of Aluminum Alloy 7075-T6”﹐Materials Science and Engineering A, vol 103, pp.223-231, 1988
[11] D. Wang , D. R. Ni , Z. Y. Ma,“Effect of pre-Strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy”,Materials Science and Engineering A, vol.494, pp.360-366, 2008
[12] P.N. Adler, R. Delasi, G. Geschwind, ”Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7050 Aluminum Alloy”, Metallurgical and Materials Transactions B, vol.3, pp.3191-3200, 1972
[13] L. B. Ber, “Accelerated artificial ageing regimes of commercial aluminium alloys. II- Al–Cu, Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys”, Materials Science and Engineering A, vol.280, pp.91–96, 2000
[14] W.Feng﹐X.Baiqing﹐Z.Yongan﹐L.Hongwei﹐Li.Zhihui﹐L.Qiang﹐”Microstructure and mechanical properties of spary-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment”, Materials Science and Engineering A, vol.518, pp.144-149, 2009
[15] J.Wloka, S. Virtanen, ”Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical micro transients”, Surface and Interface Analysis, pp.1219-1225, 2008
[16] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Yuntian T. Zhu, ” Simultaneously Increasing the Ductility and strength of Nanostructures Alloys”, Advanced Materials, vol.18, pp.2280-2283, 2006
[17] 黃清添﹐「析出製成參數對AA7005鋁擠型合金的機械性質與抗應力腐蝕性之影響」﹐國立台灣科技大學﹐碩士論文﹐民國91年
[18] D. W. Strawbridge, W. Hume-Rothery and A. T. Little, Journal of Materials Science, vol.74, pp.191, 1948
[19] American Society for Metals, Metals Handbook Committee and Taylor Lyman (Eds), Metals handbook:Metallography, Structures and Phase Diagrams, 8th edition, American Society for Metals, 1973
[20] Q. J. Meng and G. S. Frankel, “Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, vol.151, pp.271-283, 2004
[21] “Fatigue and Fracture”, ASM Handbook, vol.19, 1996
[22] 陳永增,鄧惠源, “機械材料試驗”, 高立出版社, 台北, 民國86 年
[23] H.W. Hayden, W.G. Moffatt and J. Wulff, The structure and properties of Materials, Volume III, John Wiley, United Kingdom, 1965
[24] C.R. Krenn, J.W. Morris Jr., “The compatibility of crack closure and Kmax dependent models of fatigue crack growth”, International Journal of Fatigue, vol.21, pp. 147-155, 1999
[25] A.K.Vasudévan,P.E.Bretz,” Near-threshold fatigue crack growth behaviour of 7xxx and 2xxx alloys: A brief review”, Proceedings of theInternational symposium on fatigue crack growth threshold concepts, Philadelphia, 1983
[26] Robert E. Reed-Hill, “The Microscopic Aspects of Fatigue Failure”,Physical Metallurgy Principles 3th Edition, pp.755~760, 1994
[27] Robert E. Reed-Hill, “The Plastic Zone Size Ahead of A Crack”, Physical Metallurgy Principles 3th Edition, pp.792~795, 1994
[28] M. Klesnil, P. Lukas, “Kinetics of Crack Growth”, Fatigue of Metallic Materials, Second Revised Edition, pp.92~97, 1992
[29] C. Laird, The influences of Metallurgical structure on the mechanisms of fatigue crack propagation, Fatigue crack propagation, ASTM STP 415, Society for Testing and Materials, Philadelphia, PA, USA, 1967
[30] Robert E. Reed-Hill, “The Rotating-Beam Fatigue Test”, Physical Metallurgy Principles 3th Edition, pp.750~752, 1994
[31] Gurbuz R, Alpay S.P., “Effect of coarse second phase particle on fatigue crack propagation of an Al-Zn-Mg-Cu alloy”, Scripta Metallurgica et Matenrialia, vol.30, pp.1373~1376,1944
[32] Li Jin-Feng,”Mechanical properties, corrosion behaviors and microstructures of 7075 aluminum alloy with various aging treatments”,Transactions of Nonferrous Metals Societyof China,pp.755-762,2008
[33] D.K. Xu,” Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As Rolled Al-Zn-Mg-Cu Alloy”, CORROSION,vol.68,2012
[34] T.D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys: A Review of the Literature 1980-1989 “,Corrosion, vol.47,pp.89-98, 1991
[35] Wang Zi-Xing,” Tensile and high-cycle fatigue properties of spray formed A110.8Zn2.9Mgl.9Cu alloys after two-stage aging treatment” Transactions of Nonferrous Metals Society of China,vol.16,2006
[36] S. G. Lim, Y. S. Jung and S. S. Kim, ” Characteristics of rapidy solidified Al 7075-xwt. % Mn alloys”, Scripta Materialia, vol.43, pp.1077-1081, 2000
[37] S. P. Knight, N. Birbilis, B. C. Muddle, A. R. Trueman and S. P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys”, Corrosion Science, vol.52,pp.4073-4080, 2010

[38] J. B. Jordon, M. F. Horstemeyer, K. Solanki, J. D. Bernardand J. T. Berry, T. N. Williams, “Damage characterization and modeling of a 7075-T651 aluminum plate”, Materials Science and Engineering A, vol.527,pp.169-179, 2009
[39] F. Y. Hung, J. D. Liao, T. S. Lui and L. H. Chen, “Electrical current induced mechanism in microstructure and nano-indention of AleZneMgeCu (AZMC) Al alloy thin film”, Current Applied Physics, vol.11, pp.1269-1273, 2011
[40] F. Andreatta, M. M. Lohrengel, H. Terryn and J. H. W. de Wit, “Electrochemical characterisation of aluminium AA7075-T6 and vsolution heat treated AA7075 using a micro-capillary cell”, Electrochimica Acta, vol.48, pp.3239-3247, 2003
[41] X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys”, Journal of Alloys and Compounds,vol.509, pp.471-476, 2011
[42] J. Wloka, G. Burklin and S. Virtanen, “Influence of second phase particles on initial electrochemical properties of AA7010-T76”, Electrochimica Acta, vol.53, pp.2055-2059, 2007
[43] G. Sha, Y. B. Wang, X. Z. Liao, Z. C. Duan, S. P. Ringer and T. G. Langdon, “Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing”, Materials Science and Engineering A, vol.527, pp.4742-4749, 2010
[44] F. Wang, B. Q. Xiong, Y. G. Zhang, Z. H. Zhang, Z. X. Wang, B. H. Zhu and H. Q. Liu,” Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy”, Materials and Design, vol.28, pp.1154-1158, 2007
[45] M. Saenz de Miera, M. Curioni, P. Skeldon and G. E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, vol.50, pp.3410-3415, 2008

[46] A. K. Mukhopadhyay, “On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA 7075 Extrusion Products”, Metallurgical and Materials Transactions A, vol.29, pp.978-987, 1998
[47] M. Saenz de Miera, M. Curioni, P. Skeldon and G. E. Thompson, “Preferential anodic oxidation of secondphase constituents during anodizing of AA2024-T3 and AA7075-T6 alloys”, Surface and Interface Analysis, vol.42, pp.241-246, 2010
[48] M. Lugoa, J.B. Jordonb, M.F. Horstemeyera, M.A. Tschoppa, J. Harrisd and A.M. Gokhale, “Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique”, Materials Science and Engineering A, vol.528, pp.6708-6714, 2011
[49] M. Saenz de Miera, M. Curioni, P. Skeldon and G.E. Thompson, “The behavior
of second phase particles during anodizing of aluminium alloys”, Corrosion Science, vol.52, pp.2489-2497, 2010
[50] A. Abolhasani, A. Zarei-Hanzaki, H. R. Abedi and M. R. Rokni, “The room temperature mechanical properties of hot rolled 7075 aluminum alloy”, Materials and Design, Vol.34, pp.631-636, 2012
[51] Kalpa Kjian,”Manufacturing Engineering and Technology 3th”
[52] Lothar Wagner, Mansour Mhaede, Manfred Wollmann Igor Altenberger, Yuji Sano,“Surface layer properties and fatigue behavior in Al 7075-T73and Ti-6Al-4V”, International Journal of Structural,vol2,99185-199,2011
[53] Charles S. Montross,“Laser shock processing and its effects on microstructure and properties of metal alloys: a review”, International Journal of Fatigue, vol.24,pp.1021-1036,2002

[54] Mansour Mhaede ,“Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73”,Materials and Design, vol.41,pp.61-66,2012
[55] Majid Shahzad ,“Influence of surface treatments on fatigue life of Al 7010 alloy”, Journal of Materials Processing Technology,vol.210,pp1821-1826,2010
[56] Terence P. Savas, “Surface Characterization of 7075-T73 Aluminum Exposed to Anodizing Pretreatment Solutions”, Journal of Materials Engineering and Performance, pp.674-681,2008
[57] Teng-shih shih,” Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure” Applied Surface Science, 2013,Doi:( http://dx.doi.org/10.1016/j.apsusc.2013.06.094),2013
[58] E. Cirik,“Effect of anodic oxidation on fatigue performance of 7075-T6 alloy”, Surface and Coatings Technology , vol.202,pp.5190-5201,2008
[59] E.S. Puchi-Cabrera,“ Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD”, International Journal of Fatigue, Vol.30,pp.1220-1230,2008
[60] Robert E. Reed-Hill, “Recrystallization”, Physical Metallurgy Principles, 3th Edition, pp.240~247,1994
[61] William D. Callister, Jr., “Recovery, Recrystallization and Grain Growth”, Materials Science and Engineering, pp.168~173,1993
[62] J. P. Lin, T. C. Lei,X. Y. An, “Dynamic Recrystallization during Hot Compression in Al-Mg Alloy”, Scripta Metallurgica, vol. 26, pp.1869~1874,1992
[63] Robert E. Reed-Hill, “Dynamic Recovery”, Physical Metallurgy Principles 3th Edition, pp.181~183,1994
[64] Robert E. Reed-Hill, “Polygonization”, Physical Metallurgy Principles 3th Edition, pp.233~239,1994

[65] George E. Dieter, “Low-angle Grain Boundaries”, Mechanical Metallurgy, SI Metric Edition, pp.193~197,1988
[66] George E. Dieter, “Stacking Faults”, Mechanical Metallurgy, SI Metric Edition, pp.135~137,1988
[67] W.Z. Han,Y. Chen,A. Vinogradov, C.R. Hutchinson, “Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy”,Materials Science and Engineering A,vol.528,7410~7416,2011
[68] Mohammed noor desmukh,R.K. Pandey,A.K. Mukhopadhyay,“Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy”, Materials Science and Engineering A,vol.435-436,pp.318~326,2006
[69] 周俊宏﹐「輥軋變形對7075-T73鋁合金的微結構與陽極行為和皮膜性質的影響」﹐國立中央大學﹐碩士論文﹐民國101年
[70] M. Tajally, Z. Huda and H.H. Masjuki, “A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy”, International Journal of Impact Engineering, vol.37, pp. 425–432, 2010
[71] E. A. Brandes and G. B(Editors), Smithells Metals Reference Book, 7th edition, Butter worth-Heinemann, Oxford, 1992
[72] D. Altenpohl, “Aluminium”, vol.37, pp.401~411, 1961
[73] Y. Yang, D. H. Li, H. G. Zheng, X. M. Li and F. Jiang, “Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy”, Materials Science and Engineering A, vol.527, pp.344-354, 2009
[74] C.R. Hutchinson,P.T. Loo,T.J. Bastow, A.J Hill,J. da Costa Teixeira,“Quantifying the strain-induced dissolution of precipitates in Al alloy microstructures using nuclear magnetic resonance”Acta Materialia,vol.57,5645~5653,2009

[75] Patton,G., Rinaldi,C., Brechet,Y., Lormand,G. and Fougeres,R.,“Study of fatigue damage in 7010 aluminum alloy”, Materials Science and Engineering A, A254, pp.207~218,1988
[76] 可靠度研究小組譯, “實用可靠度”, 和昌出版社, 中壢, 民國73 年, 第245~263 頁。
[77] Veletsos, Anesitis Stavrou, “Design Approaches”, Chapter 15,pp.663~679,1988
[78] Teng-Shih Shih, Wen-Sun Liu, Yeong-Jern Chen, “Fatigue of as-extruded AZ61A magnesium alloy”, Materials Science and Engineering A, 2001 Accepted
[79] P.S. De,R.S. Mishra,“Microstructural evolution during fatigue of ultrafine grained aluminum alloy”,Materials Science and Engineering A,vol.527,pp.7719-7730,2010
[80] T. C. Schulthhess, P. E. A. Turchi, A. Gonis, T. G. Nieh, Acta Mater., 46 (1998) p.2215
[81] J. P. Lin, Scripta Metallurgica, 26 (1992) p. 1869.
[82] H. Loffler, D. Bergner, (1995) “Structure and structure development of Al-Zn alloy”, VCH Pub., Inc., N.Y, p.446, p.453.
[83] L. Iglesias-Rubianes, P. Skeldon, G.E. Thompson, U. Kreissig, D. Grambole,H. Habazaki, K. Shimizu, ” Behaviour of hydrogen impurity in aluminium alloys during anodizing”, Thin Solid Films, vol424, pp.201~207,2003
[84] I. M. Robertson , H. K. Birnbaum, ” Dislocation mobility and hydrogen – A BRIEF REVIEW”
[85] P. J. Ferreira, I. M. Robertson, H. K. Birnbaum, “Hydrogen effects on the character of dislocations in high purity Aluminum”, Acta Metallurgica, vol.47,pp.2991~2998, 1999
[86] F.J. Humphreys, M. Hatherly, ”Recrystallization and Related Phenomena”,pp.131, 1995
[87] K.V. Jata,S.L. Semiatin,”Continuous Dynamic Recrystallization during friction stir welding of high strength aluminum alloys”,Scripta Materialia,vol.43,pp.743~749,2000
[88] J.P.Hirth, et al., “Theory of dislocations, second edition, Wiley, New York, pp.59-61, pp.73-76, pp.731-734, 1982
指導教授 施登士(Teng-shih Shih) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明