博碩士論文 100624012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.133.79.70
姓名 熊柏翔(Bo-Siang Xiong)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 苗栗地區儲集層氣體滲流異向性研究
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
★ 九份-金瓜石地區火成作用對有機物成熟度之影響★ 不同成熟度之有機成分探討
★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究★ 鏡煤素反射率抑制問題與熱模擬之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 孔隙率及滲透率為評估儲集層油氣儲存量及二氧化碳封存重要的參數,因此,在CO2封存前必須對儲集層進行評估,為使評估更準確,對儲集層岩石特性的了解是相當重要的課題。砂岩孔隙率主要受控於岩石的組織 (粒度、淘選度)或是膠結作用而有所差異,而砂岩滲透率的大小則受到孔隙的連通性、孔隙幾何、孔隙型態、孔喉大小等因素所控制,為了瞭解儲集層砂岩孔隙率及滲透率異向性和砂岩特性之間的關係,本研究選用苗栗地區出磺坑背斜中新世至更新世的砂岩,以氦氣作為孔隙流體,利用高圍壓滲透/孔隙儀 (YOKO2),量測圍壓3至60MPa下垂直與平行層面之氣體滲透率,探討砂岩滲透率異向性之差異,並利用偏光顯微鏡對樣本進行礦物成份及組織分析,另外也配合電子顯微鏡對砂岩進行微觀構造分析,辨別樣本中較微小的礦物、膠結作用和孔隙型態,最後進一步探討不同砂岩氣體滲流異向性、孔隙率、孔隙型態和砂岩特性之間的關聯性,以作為未來評估CCS於儲集層之參考。實驗結果顯示大部份樣本平行層面的滲透率大於垂直層面的滲透率,且滲透率異向性隨圍壓增加而增加。苗栗地區砂岩樣本孔隙型態主要是以巨孔中的原生孔隙為主,另外黏土礦物中也包含了微孔隙,次生孔隙含量較少,礦物組成主要以石英和岩屑為主,長石含量不高。利用偏光顯微鏡定量的巨孔孔隙率和滲透率的R2為0.78, 顯示滲透率值受到了砂岩中巨孔的影響。
摘要(英) Porosity and permeability are important assessment factors for CO2 sequestration in reservoir rocks. In order to improve the assessment, properties of reservoir rock are important and need to be evaluated in advance. Porosity of sandstone is controlled by texture and degree of cementation, whereas permeability is controlled by pore-throat size, pore type and connectivity of pore throat. Sandstones aged Miocene to Pliocene in Miaoli area, NW Taiwan, were collected in this study. YOKO2 porosity/permeability detector is used to measure their permeability perpendicular and parallel to bedding planes under 3 to 60MPa confining pressure with Helium as media. Optical microscope and scanning electron microscope (SEM) were then used to observe the mineral composition, lithology, texture and pore type of sandstones, so as to explore the influence of rock properties on porosity and anisotropy of permeability, as well as the storage potential for CO2 sequestration in the future. The experimental results show that most of the horizontal permeability exceeds the vertical permeability and the anisotropy increases with increasing confining pressure. Mineral composition of sandstones studied were mainly quartz and lithic with little feldspar content. The pore types were mainly primary megapores and micropores in this study. The correlation between macropores and permeability were stronger than that of total porosity and permeability, mainly due to total porosity contains micropores which contribute little to permeability.
關鍵字(中) ★ 孔隙率
★ 滲透率
★ 異向性
★ 孔隙型態
關鍵字(英) ★ porosity
★ permeability
★ anisotropy
★ pore type
論文目次 摘要………………………………………………………………v
Abstract………………………………………………………………… vi
致謝……………………………………………………………………vii
目錄…………………………………………………………………… viii
圖目錄………………………………………………………………… xi
表目錄…………………………………………………………………xiv
第一章 緒論……………………………………………………………1
1.1研究動機與目的…………………………………………………1
1.2內文概述…………………………………………………………2
第二章 文獻回顧………………………………………………………4
2.1 CO2封存潛能研究…………………………………………… 4
2.2 影響砂岩孔隙率與滲透率之外在因素………………………8
2.2.1 孔隙率………………………………………………………9
2.2.2 滲透率………………………………………………………10
2.3 影響砂岩孔隙率與滲透率之內在因素………………………… 11
2.3.1 砂岩組織……………………………………………………12
2.3.2 礦物組成……………………………………………………14
2.3.3 孔隙型態……………………………………………………15
2.3.4 砂岩異向性…………………………………………………17
第三章 研究方法………………………………………………………19
3.1 研究樣本與區域地質概述…………………………………… 19
3.2 研究流程……………………………………………………… 25
3.3孔隙率、滲透率試體製備………………………………………26
3.4 孔隙率/滲透率量測……………………………………………27
3.4.1 滲透率異向性量測…………………………………………27
3.4.2 孔隙率量測…………………………………………………29
3.5 偏光顯微鏡分析……………………………………………… 30
3.5.1礦物組成及巨孔隙分析……………………………………32
3.5.2 砂岩顆粒分析………………………………………………33
3.6 掃描式電子顯微鏡分析……………………………………… 34
第四章 結果與討論……………………………………………………38
4.1 砂岩滲透率異向性……………………………………………38
4.2 礦物組成、組織與滲透率……………………………………42
4.3 孔隙分析與滲透率……………………………………………53
4.3.1總孔隙率及滲透率關係……………………………………53
4.3.2 偏光顯微鏡巨孔隙分析……………………………………53
4.3.3 掃描式電子顯微鏡分析……………………………………55
4.3.4 Image J影像分析…………………………………………58
4.4 綜合討論………………………………………………………60
第五章 結論與建議……………………………………………………63
參考文獻………………………………………………………………64
附錄……………………………………………………………………73
A. 滲透率異向性平行測量 (//) 與垂直 (⊥) 層面之
試體……………………………………………………………73
B. 異向性平行 (//) 與垂直 (⊥) 層面之試體長度及直徑…75
C. 砂岩岩樣分佈百分比與粒徑關係長條圖……………………76
D.砂岩滲透率異向性量測數據……………………………78
參考文獻 ﹝1﹞Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby, G.A., Holloway, S., Johannessen, P.N., “Geological reservoir characterization of a CO2 storage site: the Utsira sand, Sleipner, northern North Sea”, Energy, 29, 1371-1381, 2004.
﹝2﹞Toyokazu, O., Nakanishi, S., Shidahara, T., Okumura, T., Hayashi, E., “Saline-aquifer CO2 sequestration in Japan-methodology of storage capacity assessment”, International Journal of Greenhouse Gas Control, 5, 318-326, 2011.
﹝3﹞Donda, F., Volpi, V., Persoglia, S., Parushev, D., “CO2 storage potential of deep saline aquifers: The case of Italy”, International Journal of Greenhouse Gas Control, 5,327-335 , 2011.
﹝4﹞Coskun, S.B., Wardlaw, N.C., Haverslew, B., “Effects of composition, texture and diagenesis on porosity, permeability and oil recovery in a sandstone reservoir”, Journal of Petroleum Science and Engineering, 8, 279-292, 1993.
﹝5﹞Molenaar, N., Cyziene, J., Sliaupa, S., “Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones”, Sedimentary Geology, 195, 135-159, 2007.
﹝6﹞Dutton, S.P., Loucks, R.G., “Reprint of :Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700 m) burial, Gulf of
Mexico Basin, U.S.A.”, Marine and Petroleum Geology, 27, 1775-1787, 2010.
﹝7﹞Image J, http://rsb.info.nih.gov/ij/index.html.
﹝8﹞IPCC, IPCC special report on carbon dioxide capture and storage, Final Draft, IPCC Working Group III on Mitigation of Climate Change, 2005.
﹝9﹞Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., Zweigel, P. “Best Practice for storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2STORE Projects.” European Union, 273 pp, 2007.
﹝10﹞Lipponen, J., Burnard, K., Beck, B., Gale, J., Pegler, B., “The IEA CCS technology roadmap: one year on”, Energy Procedia, 4, 5752-5761, 2011.
﹝11﹞Mikael, R., “CCS in developing countries: A comparison of Brazil, South Africa and India”, Global Environmental Change, 21, 391-401, 2011.
﹝12﹞Cook, P.J., Rigg, A.J., Bradshaw, J., “Putting it back from where it came from: is geological disposal of carbon dioxide an option for Australia”, The APPEA Journal, 40(1), 654-666, 2000.
﹝13﹞CO2CRC, “Storage capacity estimation, site selection and characterization foe CO2 storage projects”, Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, CO2CRC Report No: RPT08-1001, 52p, 2008.
﹝14﹞Busch, A., Alles, S., Gensterblum, Y., Prinz, D., David, N.D., Mark, D.R., Stanjek, H., Bernhard, M.K., “Carbon dioxide storage potential of shales”, International Journal of Greenhouse Gas Control, 2, 297-308, 2008.
﹝15﹞Qi, D., Zhang, S., K., “Risk assessment of CO2 geological storage and the calculation of storage capacity”, Petroleum Science and Technology, 28, 979-986, 2010.
﹝16﹞Thibeau, S., Mucha, V., “Have we overestimated saline aquifer CO2 storage capacity?”, Oil and Gas Science and Technology Vol.66, pp.81-92, 2007.
﹝17﹞Bradshaw, J., Rigg, A., “The GEODISC Program: Research into Geological Sequestration of CO2 in Australia”, Environmental Geosciences, Vol.8, pp. 166-176, 2001.
﹝18﹞Bachu S., Adams J.J., “Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution”, Energy Conversion and Managagement, 44, 20, 3151-3175, 2003.
﹝19﹞Holloway, S., “An overview of the Joule II project, The underground disposal of carbon dioxide”, Energy Conversion and Management, 37, 1149-1154, 1996.
﹝20﹞呂明達、宣大衡、黃雲津、范振暉,台灣陸上二氧化碳封存潛能推估,鑛冶52卷第3期,154-161頁,民國九十七年九月。
﹝21﹞Mondol, N.H., Bjørlykke, K., Jahren, J., Høeg, K., “Experimental mechanical compaction of clay mineral aggregates-Changes in physical properties of mudstones during burial”, Marine and Petroleum Geology, Vol. 24, pp. 289-311, 2007.
﹝22﹞Athy, L.F., “Density, porosity, and compaction of sedimentary rocks”, The American Association of Petroleum Geologists Bulletin, Vol 14, 1-24, 1930.
﹝23﹞Proshlyakov, B.K., “Reservoir properties of rocks as a function of their depth and lithology”, Geol. Nefti i Gaza, 12, 24–29, 1960.
﹝24﹞Meade, R.H., “Factors influencing the early stages of the compaction of clays and sands-review”, Journal of Sedimentary Petrology, 36 (4), 1085-1101, 1966.
﹝25﹞Engelhardt, W.V., Gaida, K.H., “Concentration changes of pore solutions during the compaction of clay sediments”, Journal of Sedimentary Petrology, 33(4), 919-930, 1963.
﹝26﹞Weller, J.M., “Compaction of sediments”, American Association of Petroleum Geologists Bulletin, 43(2), 273-310, 1959.
﹝27﹞Larsen, G., Chilingar, G.V., “Diagenesis in Sediments and Sedimentary Rocks; 2, Introduction, Developments in Sedimentology 25B”, Elsevier Scientific Publishing Co., New York, 1983.
﹝28﹞Baldwin, B., Butler, C.O., “Compaction curves”, American Association of Petroleum Geologists Bulletin, 69(4), 622-626, 1985.
﹝29﹞Baldwin, B., “Ways of deciphering compacted sediments”, Journal of Sedimentary Petrology, 41 (1), 293-301, 1971.
﹝30﹞Goulty, N.R., “Relationships between porosity and effective stress in shales”, First Break, 16(12), 413-419, 1998.
﹝31﹞Hedberg, H.D., “Gravitational compaction of clays and shales”, American Journal of Science, 31(184), 241–287, 1936.
﹝32﹞Terzaghi, K., “Principles of soil mechanics: I-phenomena of cohesion of clays, IV-settlement and consolidation of clay, Engineering News-Record, 95(19), 742-746, 874-878, 1925.
﹝33﹞Dickinson, G., “Geological aspects of abnormal reservoir pressures in the Gulf Coast Louisiana”, American Association of Petroleum Geologists Bulletin, 37 (2), 410-432, 1953.
﹝34﹞Vassoevich, N.B., “Experiment in constructing typical gravitational compaction curve of clayey sediments”, Nov. Neft. Tekh., Geol. Ser. (News Pet. Tech., Geol.), 4, 11-15, 1960.
﹝35﹞Durmishyan, A.G., “Compaction of argillaceous rocks”, International Geology Review, 16(6), 650-653, 1974.
﹝36﹞Magara, K., “Compaction and migration of fluids in Miocene mudstone, Nagaoka plain, Japan”, American Association of Petroleum Geologists Bulletin, 52, 2466-2501, 1968.
﹝37﹞Fowler, S.R., White, R.S., Louden, K.E., “Sediment dewatering in the Makran accretionary prism”, Earth and Planetary Science Letters, 75(4), 427-438, 1985.
﹝38﹞Velde, B., “Compaction trends of clay-rich deep sea sediments”, Marine Geology, 133(3-4), 193-201, 1996.
﹝39﹞Ham, H.H., “New charts help estimate formation pressures”, Oil and Gas Journal, 65 (51), 58-63, 1966.
﹝40﹞Minshull, T.A., White, R., “Sediment compaction and fluid migration in the Makran accretionary prism”, Journal of Geophysical Research, B, Solid Earth and Planets, 94(6), 7387-7402, 1989.
﹝41﹞Sclater, J.G., Christie, P.A.F., “Continental stretching; an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin”, Journal of Geophysical Research, 85(B7), 3711-3739, 1980.
﹝42﹞Hansen, S., “A compaction trend for Cretaceous and tertiary shales on the Norwegian shelf based on sonic transit times”, Petroleum Geoscience, 2(2), 159-166, 1996.
﹝43﹞Aoyagi, K., Kazama, T., Sekiguchi, K., Chilingarian, G.V., “Experimental compaction of Na-montmorillonite clay mixed with crude oil and seawater”, Water-rock interaction, 49(1-3), Elsevier, Amsterdam, Netherlands. pp. 385-392, 1985.
﹝44﹞Magara, K., “Comparison of porosity-depth relationships of shale and sandstone”, Journal of Petroleum Geology, 3, 175-185, 1980.
﹝45﹞Gier, S., Worden, R.H., Johns, W.D., Kurzweil, H., Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria, Marine and Petroleum Geology, 25, 681-695, 2008.
﹝46﹞Medina, C.R., Rupp, J.A., Barnes, D.A., “Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer”, Greenhouse Gas Control, 5, 146-156, 2011.
﹝47﹞Salima, B.L., “Hydraulic versus pneumatic measurements of fractured sandstone permeability”, Journal of Petroleum Science and Engineering, 36, 183-192, 2002.
﹝48﹞David, C., Wong, T.F., Zhu, W., Zhang, J., “Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust”, Pure and Applied Geophysics, Vol. 143, No. 1/2/3, pp. 425-456, 1994.
﹝49﹞Shi, T., Wang, C. Y., “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol. 91, No. B2, pp. 2153-2162, 1986.
﹝50﹞何春蓀,普通地質學,國立編譯館,共751頁,1989。
﹝51﹞Sun, S.W., Shu, L.S., Zeng, Y.W., Cao, J., Feng, Z.Q., “Porosity–permeability and textural heterogeneity of reservoir sandstones from the Lower Cretaceous Putaohua Member Of Yaojia Formation, Weixing Oilfield, Songliao Basin, Northeast China”, Marine and Petroleum Geology, 24, 109-127, 2007.
﹝52﹞Khidir, A., Catuneanu, O., “Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep”, Marine and Petroleum Geology, 27, 2037-2050, 2010.
﹝53﹞Mckinley, J.M., “How porosity and permeability vary spatially with grain size, sorting, cement volume, and mineral dissolution in fluvial Triassic sandstones: the value of geostatistics and local regression”, Journal of Sedimentary Research, 81, 844-858, 2011.
﹝54﹞Zhang, L.P., Bai, G.P., Luo, X.R., Ma, X.H., Chen, M.G., Wu, M.H., Yang, W.X., “Diagenetic history of tight sandstones and gas entrapment in the Yulin Gas Field in the central area of the Ordos Basin, China”, Marine and Petroleum Geology, 26, 974-989, 2009.
﹝55﹞Selley, R.C., “Elements of petroleum geology”, Academic Press, 470p, 1998.
﹝56﹞Gier, S., Worden, R.H. Johns, W.D., Kurzweil, H., “Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria Marine and Petroleum Geology”, 25, 681-695,2008.
﹝57﹞Hoholick, J.D., Metarko, T., Potter, P.E., “Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin”, American Association of Petroleum Geologists Bulletin, 68, 753-764, 1984.
﹝58﹞Pittman, E.D., “Microporosity in carbonate rocks”, American Association of Petroleum Geologists Bulletin, 55, 1873-1878, 1971.
﹝59﹞Ehrenberg, S.N., “Relationship between diagenesis and reservoir quality in sandstones of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf”, American Association of Petroleum Geologists Bulletin, 74, 1538-1558, 1990.
﹝60﹞Dutton, S.P., Diggs, T.N., “Evolution of porosity and permeability in the Lower Cretaceous Travis Peak Formation, East Texas”, American Association of Petroleum Geologists Bulletin, 76, 252-269, 1992.
﹝61﹞陳培源,台灣地質,台灣省應用地質技師公會,共526頁,2006。
﹝62﹞何信昌,苗栗圖幅說明書,經濟部中央地質調查所,共69頁1994。
﹝63﹞李錦發,東勢圖幅說明書,經濟部中央地質調查所,共117頁,2000。
﹝64﹞Dong, J.J., Hsu, J.Y., Wu, W.J., Shimamoto, T., Hung, J.H., Yeh, E. C., Wu, Y.H., Sone, H., “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A”, Inernational Journal of Rock Mechanics & Mining Sciences, 47, 1141-1157, 2010.
﹝65﹞Battistutta, E., Hemert, P.V., Lutynski, M., Bruining, H., Wolf, K.H., “Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal”, International Journal of Coal Geology, 84, 39-48, 2010.
﹝66﹞Weniger, P., Kalkreuth, W., Busch, A., Krooss, B. M., “High-pressure methane and carbon dioxide sorption on coal and shale samples from the Parana Basin, Brazil”, International Journal of Coal Geology, 84, 190-205, 2010.
﹝67﹞王玲絲,「苗栗地區儲集層孔隙率與滲透率特性評估」國立中央大學,碩士論文,2011。
﹝68﹞Nesse, W.D., “Introduction to optical mineralogy”, Oxford University Press, 335p, 1991.
﹝69﹞Adams, A.E., Mackenzie, W.S., Guilford, C., “Atlas of sedimentary rocks under the microscope”, 495p, 1984.
﹝70﹞常麗華、陳曼雲、金巍、李世超、于介江,透明礦物薄片鑑定手冊,地質出版社,共258頁,2006。
﹝71﹞Pettijohn, F.J., Sedimentary Rock, Harper and Row, New York, 1975.
﹝72﹞Nichols, G., Sedimentary and stratigraphy, Wiley-Blackwell, 419p, 2009.
﹝73﹞Inman, D.L., “Measures for describing the size distribution of sediments”, Journal of Sedimentary Petrology, 22, 117-119, 1952.
﹝74﹞Reed, S.J.B., “Electron microprobe analysis and scanning electron microscopy in geology”, Cambridge University Press, 189p, 2005.
﹝75﹞Krinsley, D.H., Pye, K., Boggs, S.J., Tovey, N.K., “Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks”, Cambridge University Press, 193p, 1998.
﹝76﹞Deer, D.A.,Howie, R.A., Zussman, J., “An introduction to the rock-forming minerals”, Longman, 696p, 1992.
﹝77﹞余允辰,台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微
觀構造,國立中央大學,碩士論文,2011。
指導教授 蔡龍珆(Loung-Yie Tsai) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明