參考文獻 |
Abbasi, S., Zebarjad, S. M., and Noie Baghban, S. H., “Decorating and filling of multi-walled carbon nanotubes with TiO2 nanoparticles via wet chemical method”, Engineering, 5, 207-212 (2013)
Agana, B. A., Reeve, D., and Orbell, J. D., “Performance optimization of a 5 nm TiO2 ceramic membrane with respect to beverage production wastewater”, Desalination, 311, 162-172 (2013)
Araña, J., Doña-Rodr´ıguez, J. M., Rendón, E. T., Cabo, C. G. i., González-D´ıaz, O., Herrera-Melián, J. A., Pérez-Peña, J., Colón, G., Nav´ıo, J. A., and Bae, K., “TiO2 activation by using activated carbon as a support Part I. Surface characterisation and decantability study”, Applied Catalysis B: Environmental, 44, 161-172 (2003)
Avetik R. Harutyunyan, Bhabendra K. Pradhan, Chang, J., Chen, G., and Eklund, P. C., “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles”, The Journal of Physical Chemistry B, 106, 8671-8675 (2002)
Bünger, U. and Zittel, W., “Hydrogen storage in carbon nanostructures – still a long road from science to commerce”, Applied Physics A Materials Science & Processing, 72, 147-151 (2001)
Batool, S. S., Imran, Z., Israr Qadir, M., Usman, M., Jamil, H., Rafiq, M. A., Hassan, M. M., and Willander, M., “Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nanofibers for humidity sensor application”, Journal of Materials Science & Technology, 29, 411-414 (2013)
Berkmans, A., Ramakrishnan, S., Jain, G., and Haridoss, P., “Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis”, Carbon, 55, 185-195 (2013)
Cao, Y., Liang, Y., Dong, S., and Wang, Y., “A multi-wall carbon nanotube (MWCNT) relocation technique for atomic force microscopy (AFM) samples”, Ultramicroscopy, 103, 103-8 (2005)
Chen, J., Bai, F.-Q., Wang, J., Hao, L., Xie, Z.-F., Pan, Q.-J., and Zhang, H.-X., “Theoretical studies on spectroscopic properties of ruthenium sensitizers absorbed to TiO2 film surface with connection mode for DSSC”, Dyes and Pigments, 94, 459-468 (2012)
Choi, W., Termin, A., and Hoffmann, M. R., “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics ”, The Journal of Physical Chemistry, 98, 13669-13679 (1994)
Coleman, J. N., Khan, U., Blau, W. J., and Gun’ko, Y. K., “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites”, Carbon, 44, 1624-1652 (2006)
Coscia, U., Ambrosone, G., Ambrosio, A., Ambrosio, M., Bussolotti, Carillo, V., Grossi, Maddalena, Passacantando, M., Perillo, Raulo, A., and Santucci, S., “Photoconductivity of multiwalled CNT deposited by CVD”, Solid State Sciences, 11, 1806-1809 (2009)
Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M. L., and Agostiano, A., “Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions”, Materials Science and Engineering: Carbon, 23, 707-713 (2003)
Cwirzen, A., Habermehl-Cwirzen, K., Nasibulin, A. G., Kaupinen, E. I., Mudimela, P. R., and Penttala, V., “SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles”, Materials Characterization, 60, 735-740 (2009)
Duesberg, G. S., Burghard, M., Muster, J., Philipp, G., and Roth, S., “Separation of carbon nanotubes by size exclusion chromatography”, Chemical Communications, 435-436 (1998)
Ebbesen, “Purification of nanotubes”, Nature, 367, 519 (1994)
Eder, D. and Windle, A. H., “Carbon–inorganic hybrid materials: the carbon-nanotube/TiO2 interface”, Advanced Materials, 20, 1787-1793 (2008)
Emilio, Emilio, C. A., Litter, M. I., Kunst, M., Bouchard, M., and Colbeau-Justin, C., “Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics”, Langmuir, 22, 3606-3613 (2006)
Fujishima, “Electrochemical Photolysis of water at a semiconductor electrode”, Nature, 238, 37-38 (1972)
Hamadanian, M., Jabbari, V., Shamshiri, M., Asad, M., and Mutlay, I., “Preparation of novel hetero-nanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support TiO2 and PbS”, Journal of the Taiwan Institute of Chemical Engineers, (2013)
Hernadi, K., Siska, A., Thien-Nga, L., Forro, L., and Kiricsi, I., “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes”, Solid State Ionics, 141-142, 203-209 (2001)
Hoffman, A. J., Carraway, E. R., and Hoffmann, M. R., “Photocatalytic production of H202 and organic peroxides on quantum-sized semiconductor collolds ”, Environmental Science & Technology, 28, 776-798 (1994)
Huang, J., Dong, Z., Li, Y., Li, J., Wang, J., Yang, H., Li, S., Guo, S., Jin, J., and Li, R., “High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study”, Sensors and Actuators B: Chemical, 182, 618-624 (2013)
Hui Hu, Bin Zhao, Itkis, M. E., and Haddon, R. C., “Nitric Acid Purification of Single-Walled Carbon Nanotubes”, The Journal of Physical Chemistry B 107, 13838 - 13842 (2003)
Iijim, S., “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991)
Jaroenworaluck, A., Sunsaneeyametha, W., Kosachan, N., and Stevens, R., “Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications”, Surface and Interface Analysis, 38, 473-477 (2006)
Jean-Paul Salvetat, Andrzej J. Kulik, Jean-Marc Bonard, G. Andrew D. Briggs, Thomas Stöckli, Karine MØtØnier, Sylvie Bonnamy, François BØguin, Nancy A. Burnham, and Forró, L. s., “Elastic modulus of ordered and disordered multiwalled carbon nanotubes”, Advanced Materials, 11, 161-165 (1999)
Kang, S. Z., Cui, Z., and Mu, J., “Composite of carboxyl‐modified multi‐walled carbon nanotubes and TiO2 nanoparticles: preparation and photocatalytic activity”, Fullerenes, Nanotubes and Carbon Nanostructures, 15, 81-88 (2007)
Kedem, s., Schmidt, j., and yaron Paz, a. y. C., “composite polymer nanofibers with carbon nanotubes and titanium dioxide particles”, Langmuir, 21, 5600-5604 (2005)
Kis, A., Csanyi, G., Salvetat, J. P., Lee, T. N., Couteau, E., Kulik, A. J., Benoit, W., Brugger, J., and Forro, L., “Reinforcement of single-walled carbon nanotube bundles by intertube bridging”, Nature materials, 3, 153-7 (2004)
Ko, F.-H., Lee, C.-Y., Ko, C.-J., and Chu, T.-C., “Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel”, Carbon, 43, 727-733 (2005)
Kreupl, F., Graham, A. P., Liebau, M., Duesberg, G. S., Seidel, R., and Unger, E., “Carbon nanotubes for interconnect applications”, IEDM Technology Digest, (2004)
Kuo, C. Y., “Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process”, Journal of Hazardous Materials, 163, 239-44 (2009)
Lee, S.-w. and Sigmund, W. M., “Formation of anatase TiO2 nanoparticles on carbon nanotubes”, Chemical Communications, 780-781 (2003)
Leonor Contreras, M., Avila, D., Alvarez, J., and Rozas, R., “Computational algorithms for fast-building 3D carbon nanotube models with defects”, Journal of Molecular Graphics and Modelling, 38, 389-95 (2012)
Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., and Wu, D., “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 1057-1062 (2003)
Lin, J.-Y., Liao, J.-H., and Hung, T.-Y., “A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells”, Electrochemistry Communications, 13, 977-980 (2011)
Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., and Jiazhong, S., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”, Solar Energy Materials and Solar Cells, 90, 1773-1787 (2006)
Lu, J., Mullen, J. R., and Brill, S. J., “purifying single-walled nanotubes”, Nature, 383, 679 (1996)
Lyson-Sypien, B., Czapla, A., Lubecka, M., Gwizdz, P., Schneider, K., Zakrzewska, K., Michalow, K., Graule, T., Reszka, A., Rekas, M., Lacz, A., and Radecka, M., “Nanopowders of chromium doped TiO2 for gas sensors”, Sensors and Actuators B: Chemical, 175, 163-172 (2012)
Mali, S. S., Betty, C. A., Bhosale, P. N., and Patil, P. S., “Synthesis, characterization of hydrothermally grown MWCNT-TiO2 photoelectrodes and their visible light absorption properties”, ECS Journal of Solid State Science and Technology, 1, M15-M23 (2012)
Munkhbayar, B., Hwang, S., Kim, J., Bae, K., Ji, M., Chung, H., and Jeong, H., “Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods”, Electrochimica Acta, 80, 100-107 (2012)
Nakata, K. and Fujishima, A., “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189 (2012)
Noda, “Chemistry and Physics of Carbon”, Carbon, 10, 239-241 (1972)
Ohenoja, K., Illikainen, M., and Niinimäki, J., “Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling”, Powder Technology, 234, 91-96 (2013)
Pang, L. S. K., Saxby, J. D., and Chatfield, S. P., “Thermogravimetric analysis of carbon nanotubes and nanoparticles ”, The Journal of Physical Chemistry, 97, 6941-6942 (1993)
Park, N.-G., Lagemaat, J. v. d., and Frank, A. J., “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, the Journal of Physical Chemistry B, 104, 8989-8994 (2000)
Peining, Z., Nair, A. S., Shengyuan, Y., and Ramakrishna, S., “TiO2–MWCNT rice grain-shaped nanocomposites—Synthesis, characterization and photocatalysis”, Materials Research Bulletin, 46, 588-595 (2011)
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., and Dionysiou, D. D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Applied Catalysis B: Environmental, 125, 331-349 (2012)
Prasad, K., Bally, A. R., Schmid, P. E., Levy, F., Benoit, J., Barthou, C., and Benalloul, P., “Ce-doped TiO2 insulators in thin film electroluminescent devices”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 36, 5696-5702 (1997)
Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B., and Smalley, R. E., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters, 282, 429-434 (1998)
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and emieniewska, T. S. I., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, 57, 603-619 (1982)
Somekawa, S., Kusumoto, Y., Yang, H., Abdulla-Al-Mamun, M., and Ahmmad, B., “Fabrication, N-doping mechanism and evaluation of N-doped TiO2 thin films based on laser ablation method ”, Journal of Scientific Research, 2, (2009)
Supawan Joonwichien, Eiji Yamasue, and Ishihara, H. O. a. K., “Effects of magnetic field on photodegradation of methylene blue over znO and TiO2 powders using UV-LED as a light source”, Journal of Chemistry and Chemical Engineering, 5, 729-737 (2011)
Tachikawa, T., Fujitsuka, M., and Majima, T., “Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts”, The Journal of Physical Chemistry C, 111, 5259-5275 (2007)
Tsang, S. C., Harris, P. J. F., and Green, M. L. H., “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 - 522 (1993)
Wang, S. and Zhou, S., “Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation”, Journal of Hazardous Materials, 185, 77-85 (2011)
Wang, Y., Li, Y., Liu, Z., Weng, Z., Ye, S., and Sasian, J. M., “A new high-precision measurement system used in the image calibration of a large-sized photographic instrument”, 5638, 404-411 (2005)
Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., and Ma, L.-L., “Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O”, Carbon, 45, 717-721 (2007)
Xie, Y. and Zhao, X., “The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F–N-codoped and S–N-codoped titania”, Journal of Molecular Catalysis A: Chemical, 285, 142-149 (2008)
Yao, “Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity”, Environmental Science and Technology, 42, 4952-4957 (2008)
Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., “Photoreactive TiO2 /Carbon Nanotube Composites: Synthesis and Reactivity”, Environmental Science and Technology, 42, 4952-4957 (2008)
Yu, J., Wang, G., Cheng, B., and Zhou, M., “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders”, Applied Catalysis B: Environmental, 69, 171-180 (2007)
Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., and Manako, T., “Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation”, Applied Surface Science, 258, 6958-6962 (2012)
Zhang, Q.-H., Gao, L., and Guo, J.-K., “Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution”, NanoStructured Materials, 11, 1293-1300 (1999)
Zhao, D., Sheng, G., Chen, C., and Wang, X., “Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure”, Applied Catalysis B: Environmental, 111-112, 303-308 (2012)
Zhou, W., Pan, K., Qu, Y., Sun, F., Tian, C., Ren, Z., Tian, G., and Fu, H., “Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity”, Chemosphere, 81, 555-61 (2010)
吳映潔,「以鉻金屬捕捉電子提升二氧化鈦對水楊酸光催化降解效率之研究」,
碩士論文,國立暨南國際大學土木工程系,南投,2010。 |