博碩士論文 100324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.144.90.204
姓名 邱鈺琇(Yu-Hsiu Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Thermal Properties and Structural Characterizations of New Types of Phase Change Material: Anhydrous and Hydrated Palmitic Acid/Camphene Solid Dispersions)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的是找到擁有在固體或液體狀態熱容量增加的相轉移材料混和物。在固相或液相,熱容量的增加可以提高儲熱的部分,可在更寬的溫度範圍內使用,而不是只在熔點或凝固點附近吸收或釋放熱能。我們使用低溫差示掃描量熱法(LT-DSC)測定熔點和平衡狀態,粉末X射線衍射(PXRD)和小角X射線散射(SAXS)測定樣品的奈米結構,溫度軌跡方法測定熱性能。棕櫚酸為一種高級脂肪酸,而莰烯為一種塑晶(Plastic crystal)。1:1莫耳比的棕櫚酸/莰烯混合物形成PA1CA1。通過使用溫度軌跡方法,無水PA1CA1的熱性能是:熔點 = 322.7+0.0 (K),液態熱含量 = 2.04+0.04 (kJ kg-1 K-1),固態熱含量 = 2.17+0.06 (kJ kg-1 K-1),潛熱 = 114.0+1.2(kJ kg-1) 和固態導熱性 = 0.21+0.00 (W m-1 K-1)和含水PA1CA1的熱性能是:熔點 = 324.8+0.2 (K),液態熱含量 = 2.29+0.04 (kJ kg-1 K-1),固態熱含量 = 2.61+0.01(kJ kg-1 K-1),潛熱 =119.6+1.8 (kJ kg-1),固態導熱性 = 0.21+0.01(W m-1 K-1)。總體而言,含水PA1CA1優於無水PA1CA1,因為含水PA1CA1比無水PA1CA1有較高的固態和液態熱容量增加。部分非晶相的形成(更加無序狀態),有助於提高固態無水或含水PA1CA1的熱容量。在此研究中的棕櫚酸和莰烯混合物並不是共晶混和物,而是222到431奈米尺寸的棕櫚酸顆粒分散在非晶型莰烯基質中以形成固態分散體(Solid dispersions)。我們的系統可以用在生物氣候建築/結構的被動儲存系統和應用在離峰時段的冷卻和加熱。
摘要(英) Our aim is to find phase change material (PCM) mixtures which also have an increase in the heat capacity in solid or liquid state. Increasing heat capacity in liquid or solid state would enhance the part of heat storage which can be used in a wider temperature range, rather than just to absorb or release heat energy near the melting point or freezing point. We use low-temperature differential scanning calorimetry (LT-DSC) to determine the melting point and the equilibrium state, powder X-ray diffraction (PXRD) and small-angle X-ray scattering (SAXS) to determine the nano structures, temperature-history method to find the thermal properties in large-scale. 1: 1 molar ratios of palmitic acid/camphene mixture (PA1CA1) By using temperature-history method, thermal properties of anhydrous PA1CA1 are: Tm = 322.7+0.0 K, cpl = 2.04+0.04 kJ kg-1 K-1, cps = 2.17+0.06 kJ kg-1 K-1, ΔHls = 114.0+1.2 kJ kg-1, and ks = 0.21+0.00 W m-1 K-1 and the thermal properties of hydrated PA1CA1 are: Tm = 324.8+0.2 K, cpl = 2.29+0.04 kJ kg-1 K-1, cps = 2.61+0.01 kJ kg-1 K-1, ΔHls = 119.6+1.8 kJ kg-1, and ks = 0.21+0.01 W m-1 K-1. Overall, hydrated PA1CA1 is better than anhydrous PA1CA1 with increasing in both heat capacity in solid and liquid state. Partial amorphous phase formation (more disordered state) helps increase the heat capacity in solid state of anhydrous or hydrated PA1CA1. The mixture of palmitic acid and camphene in this research is not a eutectic mixture but rather palmitic acid particles nanometer-sized 222 nm ~431 nm are dispersed in partial amorphous camphene matrix to form a solid dispersion. Our systems can be used in passive storage in bio-climatic building/architecture and application in off-peak electricity for cooling and heating.
關鍵字(中) ★ 相轉移材料
★ 棕櫚酸
★ 莰烯
★ 固體分散體
★ 溫度-軌跡法
關鍵字(英) ★ phase change materials
★ palmitic acid
★ camphene
★ solid dispersions
★ temperature-history method
論文目次 摘要........................................i
Abstract...................................ii
Acknowledgement............................iv
Table of Contents...........................v
List of Figures..........................viii
List of Tables............................xii
Chapter 1...................................1
Introduction................................1
1.1 Phase Change Materials (PCMs)...........1
1.2 References.............................10
Chapter 2..................................13
Analytical Instruments.....................13
2.1 Introduction...........................13
2.2 Microscopic Methods....................16
2.2.1 Polarized Optical Microscopy (POM)...16
2.3 Thermal Analysis Methods...............17
2.3.1 Low Temperature Differential Scanning Calorimetry (LTDSC)....................................17
2.3.2 Thermocouple.........................20
2.4 Crystallographic Analysis Methods......22
2.4.1 Small-Angle X-ray Scattering (SAXS)..22
2.4.2 Powder X-ray Diffraction (PXRD)......25
2.5 References.............................28
Chapter 3..................................30
Phase Change Materials (PCMs)..............30
3.1 Introduction...........................30
3.2 Materials..............................36
3.3 Experimental Methods...................40
3.4 Analytical Instrumentations............42
3.5 Results and discussion.................49
3.5.1 Anhydrous and hydrated PA1CA1........50
3.6 Conclusions............................70
3.7 References.............................71
Chapter 4..................................76
Conclusions and Future works...............76
4.1 The Structure and the Thermal properties of anhydrous and hydrated PA1CA1........................76
4.2 Future works...........................77
4.3 References.............................78
Appendix A.................................79
參考文獻 Chapter 1
[1]Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10 (3), 201-205.
[2]Prabhu, P. A.; Shinde, N. N.; Patil, P. S. Review of Phase Change Materials For Thermal Energy Storage Applications. IJERA 2012, 2 (3), 871-875.
[3]Jurinak, J. J.; Abdel-Khalik, S. I. Properties optimization for phase-change energy
storage in air-based solar heating systems. Sol. Energy 1978, 21 (5), 377-383.
[4]Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sust. Energ. Rev. 2013, 18, 246-258.
[5]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 6, p 155.
[6]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 3, p 79.
[7]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 4, p 105.
[8]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[9]Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energ. Convers. Manage. 2002, 43 (6), 863-876.
[10]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[11]Regin, A. F.; Solanki, S. C.; Saini, J. S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sust. Energ. Rev. 2008, 12 (9), 2438-2458.
[12]Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sust. Energ. Rev. 2007, 11 (9), 1913-1965.
[13]Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sust. Energ. Rev. 2010, 14 (2), 615-628.
[14]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[15]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[16]Singh, S.; Baghel, R. S.; Yadav, L. A review on solid dispersion. Int. J. of Pharm. & Life Sci. 2011, 2 (9), 1078-1095.
[17]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[18]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[19]Cedeñoa, F. O.; Prieto, M. M.; Espinac, A.; Garcı́a, J. R. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim. Acta 2001, 369 (1-2), 39-50.
Chapter 2
[1]Spong, B. R.; Price, C. P.; Jaysasankar, A.; Matzger, A. J.; Hornedo, N. R. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 2004, 56 (3), 241-274.
[2]Souza, S. L.; Capitán, M. J.; Álvarez, J. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375.
[3]Souza, S. L.; Valério, J.; Funari, S. S.; Melo, E. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. an exploratory study. Chem. Phys. Lipid 2011, 164 (7), 643-653.
[4]Roe, R. J. In Methods of X-ray and neutron scattering in polymer science; Mark, J. E., Eds.; Oxford University Press: New York, NY, 2000; Chapter 5, pp 155-208.
[5]Brittain, H. G. In Polymorphism in Pharmaceutical Solids; Marcel Dekker: New York, NY, 1999; Chapter 6, pp 227-271.
[6]Clas, S. D.; Dalton, C. R.; Hancok, B. C. Differential scanning calorimetry: applications in drug development. PSTT 1999, 2 (8), 311-320.
[7]Boldyerva, E. V.; Drebushchak, V. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Drebushchak, T. N. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J. Them. Anal. Calor. 2004, 77 (2), 607-623.
[8]Devices, A. In Sensors; Zumbahlen, H., Eds.; Analog Devices Inc.: New York, NY, 2008; Chapter 3, pp 3.1-3.100.
[9]The Labfacility temperature handbook.
[10]The operation manual of TM-947SD thermometer.
[11]Chang, C. Y.; Lee, Y. C.; Wu, P. J.; Liou, J. Y.; Sun, Y. S.; Ko, B. T. Micellar transitions in solvent-annealed thin films of an amphiphilic block copolymer controlled with tunable surface fields. Langmuir 2011, 27 (23), 14545-14553.
[12]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[13]Padden, B. E.; Zell, M. T.; Dong, Z.; Schroeder, S. A.; Grant, D. J. W.; Munson, E. J. Comparison of solid-state C-13 NMR spectroscopy and powder X-ray diffraction for analyzing mixtures of polymorphs of neotame. Anal. Chem. 1999, 71 (16), 3325-3331.
[14]Murthy, N. S.; Reidinger, F. X-ray Analysis. In Materials Characterization and Chemical Analysis, 2nd Ed.; Sibilia, J. P. Eds.; Wiley-VCH, New York, NY, 1996; Chapter 6, pp 143-149.
Chapter 3
[1]Nallusamy, N.; Sampath, S.; Velraj, R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renew. Energ. 2007, 32 (7), 1206-1227.
[2]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[3]Oró, E.; de Gracia, A.; Castell, A.; Farid, M. M.; Cabeza, L. F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energ. 2012, 99, 513-533.
[4]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[5]Jurinak, J. J.; Abdel-Khalik, S. I. Properties optimization for phase-change energy
storage in air-based solar heating systems. Sol. Energy 1978, 21 (5), 377-383.
[6]Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sust. Energ. Rev. 2013, 18, 246-258.
[7]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[8]Suppes, G. J.; Goff, M. J.; Lopes, S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 2003, 58 (9), 1751-1763.
[9]Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sust. Energ. Rev. 2010, 14 (2), 615-628.
[10]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[11]Yanping, Y.; Wenquan, T.; Xiaoling, C.; Li, B. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture. J. Chem. Eng. Data 2011, 56 (6), 2889-2891.
[12]Bo, H.; Gustafsson, E. M.; Setterwall, F. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 1999, 24 (12), 1015-1028.
[13]Singh, S.; Baghel, R. S.; Yadav, L. A review on solid dispersion. Int. J. of Pharm. & Life Sci. 2011, 2 (9), 1078-1095.
[14]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 6, p 155.
[15]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 3, p 79.
[16]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 4, p 105.
[17]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[18]Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energ. Convers. Manage. 2002, 43 (6), 863-876.
[19]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[20]Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sust. Energ. Rev. 2007, 11 (9), 1913-1965.
[21]Ismail, K. A. R.; Alves, C. L. F.; Modesto, M. S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Therm. Eng. 2001, 21 (1), 53-77.
[22]Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ Convers. Manage. 2004, 45 (9-10), 1597-1615.
[23]Moreno, E.; Cordobilla, R.; Calvet, T.; Cuevas-Diarte, M. A.; Gbabode, G.; Negrier, P.; Mondieig, D.; Oonk, H. A. J. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J. Chem. 2007, 31 (6), 947-957.
[24]Holderna-Natkaniec, K.; Natkaniec, I. Study of internal vibrations of dl-camphene by IINS method. Physica B 1994, 194-196, 371-372.
[25]Parks, G. S.; Huffman, H. M. Some fusion and transition data for hydrocarbons. Ind. Eng. Chem. 1931, 23 (10), 1138-1139.
[26]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[27]Dunning, W. J. Crystallographic studies of plastic crystals. J. Phys. Chem. Solids 1961, 18 (1), 21-27.
[28]Chang, C. Y.; Lee, Y. C.; Wu, P. J.; Liou, J. Y.; Sun, Y. S.; Ko, B. T. Micellar transitions in solvent-annealed thin films of an amphiphilic block copolymer controlled with tunable surface fields. Langmuir 2011, 27 (23), 14545-14553.
[29]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[30]Souza, S. L.; Capitán, M. J.; Álvarez, J.; Funari, S. S.; Lameiro, M. H.; Melo, E. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375.
[31]Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10 (3), 201-205.
[32]Rady, M. A.; Arquis, E.; Le Bot, C. Characterization of granular phase changing composites for thermal energy storage using the T-history method. Int. J. Energ. Res. 2010, 34 (4), 333-344.
[33]Qian, F.; Tao, J.; Desikan, S.; Hussain, M.; Smith, R. L. Mechanistic investigation of pluronic® based nano-crystalline drug-polymer solid dispersions. Pharm. Res. 2007, 24 (8), 1551-1560.
[34]Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56 (10), 978-982.
[35]Kittel, C. In Introduction to solid state physics 2nd Ed.; John Wiley & Sons, Inc.: New York, NY, 1965; Chapter 6, p 118.
[36]Reif, F. In Fundamentals of statistical and thermal physics; McGraw-Hill: New York, NY, 1965; Chapter 7, pp 253-254.
[37]Cooper, A. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophys. Chem. 2000, 85 (1), 25-39.
[38]Lide, D. R. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data 86th Ed.; CRC Press: Boca Raton, 2005; Chapter 12, p 12-202.
[39]Sturtevant, J. M. Heat capacity and entropy changes in processes involving proteins. Proc. Natl. Acad. Sci. 1977, 74 (6), 2236-2240.
[40]Moreno, E.; Cordobilla, R.; Calvet, T.; Cuevas-Diarte, M. A.; Gbabode, G.; Negrier, P.; Mondieig, D.; Oonkc, H. A. J. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J. Chem. 2007, 31 (6), 947-957.
Chapter 4
[1]Zalba, B.; Marı́na, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251-283.
[2]Verma, P.; Varuna, P. Singal, S. K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sust. Energ. Rev. 2008, 12 (4), 999-1031.
[3]Cedeñoa, F. O.; Prieto, M. M.; Espinac, A.; Garcı́a, J. R. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim. Acta 2001, 369 (1-2), 39-50.
[4]Peippo, K.; Kauranen, P.; Lund, P. D. A multicomponent PCM wall optimized for passive solar heating. Energ. Buildings 1991, 17 (4), 259-270.
[5]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[6]Sari, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 2007, 27 (8-9), 1271-1277.
Appendix A
[1]Masters, B.; So, P. T. C.; Gratton, E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 1997, 72 (6), 2405-2412.
[2]Wickett, R. R.; Visscher, M. O. Structure and function of the epidermal barrier. Am. J. Infect. Control 2006, 34 (10), S98-S110.
[3]Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 1991, 96 (4), 523-526.
[4]Sandby-Møller, J.; Poulsen, T.; Wulf, H. C. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003, 83 (6), 410-413.
[5]Gooris, G. S.; Bouwstra, J. A. Infrared spectroscopic study of stratum corneum model membranes prepared from human ceramides, cholesterol, and fatty acids. Biophys. J. 2007, 92 (8), 2785-2795.
[6]Charalambopoulou, G. C.; Karamertzanis, P.; Kikkinides, E. S.; Stubos, A. K.; Kanellopoulos, N. K.; Papaioannou, A. T. A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm. Res. 2000, 17 (9), 1085-1091.
[7]Corbe, E.; Laugel, C.; Yagoubi, N.; Baillet, A. Role of ceramide structure and its microenvironment on the conformational order of model stratum corneum lipids mixtures: an approach by FTIR spectroscopy. Chem. Phys. Lipids 2007, 146 (2), 67-75.
[8]Zhu, Y.; Imae, T.; Saiwaki, T.; Oka, T. Damage/recovery by additive on lipid membrane as a mimicry of human stratum corneum. Langmuir 2010, 26 (7), 4951-4957.
[9]Di Nardo, A.; Wertz, P.; Giannetti, A.; Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998, 78 (1), 27-30.
[10]Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T.; Takema, Y.; Kita, K. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49 (7), 1466-1476.
[11]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[12]Anderson, N. G. In Practical Process Research & Development; Academic Press: New York, NY, 2000; pp 81-111.
[13]Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
[14]Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-92.
[15]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[16]Souza, S. L.; Capitán, M. J.; Álvarez, J.; Funari, S. S.; Lameiro, M. H.; Melo, E. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375.
指導教授 李度(Tu Lee) 審核日期 2013-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明