參考文獻 |
Chapter 1
[1]Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10 (3), 201-205.
[2]Prabhu, P. A.; Shinde, N. N.; Patil, P. S. Review of Phase Change Materials For Thermal Energy Storage Applications. IJERA 2012, 2 (3), 871-875.
[3]Jurinak, J. J.; Abdel-Khalik, S. I. Properties optimization for phase-change energy
storage in air-based solar heating systems. Sol. Energy 1978, 21 (5), 377-383.
[4]Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sust. Energ. Rev. 2013, 18, 246-258.
[5]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 6, p 155.
[6]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 3, p 79.
[7]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 4, p 105.
[8]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[9]Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energ. Convers. Manage. 2002, 43 (6), 863-876.
[10]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[11]Regin, A. F.; Solanki, S. C.; Saini, J. S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sust. Energ. Rev. 2008, 12 (9), 2438-2458.
[12]Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sust. Energ. Rev. 2007, 11 (9), 1913-1965.
[13]Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sust. Energ. Rev. 2010, 14 (2), 615-628.
[14]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[15]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[16]Singh, S.; Baghel, R. S.; Yadav, L. A review on solid dispersion. Int. J. of Pharm. & Life Sci. 2011, 2 (9), 1078-1095.
[17]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[18]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[19]Cedeñoa, F. O.; Prieto, M. M.; Espinac, A.; Garcı́a, J. R. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim. Acta 2001, 369 (1-2), 39-50.
Chapter 2
[1]Spong, B. R.; Price, C. P.; Jaysasankar, A.; Matzger, A. J.; Hornedo, N. R. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 2004, 56 (3), 241-274.
[2]Souza, S. L.; Capitán, M. J.; Álvarez, J. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375.
[3]Souza, S. L.; Valério, J.; Funari, S. S.; Melo, E. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. an exploratory study. Chem. Phys. Lipid 2011, 164 (7), 643-653.
[4]Roe, R. J. In Methods of X-ray and neutron scattering in polymer science; Mark, J. E., Eds.; Oxford University Press: New York, NY, 2000; Chapter 5, pp 155-208.
[5]Brittain, H. G. In Polymorphism in Pharmaceutical Solids; Marcel Dekker: New York, NY, 1999; Chapter 6, pp 227-271.
[6]Clas, S. D.; Dalton, C. R.; Hancok, B. C. Differential scanning calorimetry: applications in drug development. PSTT 1999, 2 (8), 311-320.
[7]Boldyerva, E. V.; Drebushchak, V. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Drebushchak, T. N. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J. Them. Anal. Calor. 2004, 77 (2), 607-623.
[8]Devices, A. In Sensors; Zumbahlen, H., Eds.; Analog Devices Inc.: New York, NY, 2008; Chapter 3, pp 3.1-3.100.
[9]The Labfacility temperature handbook.
[10]The operation manual of TM-947SD thermometer.
[11]Chang, C. Y.; Lee, Y. C.; Wu, P. J.; Liou, J. Y.; Sun, Y. S.; Ko, B. T. Micellar transitions in solvent-annealed thin films of an amphiphilic block copolymer controlled with tunable surface fields. Langmuir 2011, 27 (23), 14545-14553.
[12]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[13]Padden, B. E.; Zell, M. T.; Dong, Z.; Schroeder, S. A.; Grant, D. J. W.; Munson, E. J. Comparison of solid-state C-13 NMR spectroscopy and powder X-ray diffraction for analyzing mixtures of polymorphs of neotame. Anal. Chem. 1999, 71 (16), 3325-3331.
[14]Murthy, N. S.; Reidinger, F. X-ray Analysis. In Materials Characterization and Chemical Analysis, 2nd Ed.; Sibilia, J. P. Eds.; Wiley-VCH, New York, NY, 1996; Chapter 6, pp 143-149.
Chapter 3
[1]Nallusamy, N.; Sampath, S.; Velraj, R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renew. Energ. 2007, 32 (7), 1206-1227.
[2]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[3]Oró, E.; de Gracia, A.; Castell, A.; Farid, M. M.; Cabeza, L. F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energ. 2012, 99, 513-533.
[4]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[5]Jurinak, J. J.; Abdel-Khalik, S. I. Properties optimization for phase-change energy
storage in air-based solar heating systems. Sol. Energy 1978, 21 (5), 377-383.
[6]Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sust. Energ. Rev. 2013, 18, 246-258.
[7]Kauranen, P.; Peippo, K.; Lund, P. D. An organic PCM storage system with adjustable melting temperature. Sol. Energy 1991, 46 (5), 275-278.
[8]Suppes, G. J.; Goff, M. J.; Lopes, S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 2003, 58 (9), 1751-1763.
[9]Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sust. Energ. Rev. 2010, 14 (2), 615-628.
[10]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[11]Yanping, Y.; Wenquan, T.; Xiaoling, C.; Li, B. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture. J. Chem. Eng. Data 2011, 56 (6), 2889-2891.
[12]Bo, H.; Gustafsson, E. M.; Setterwall, F. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 1999, 24 (12), 1015-1028.
[13]Singh, S.; Baghel, R. S.; Yadav, L. A review on solid dispersion. Int. J. of Pharm. & Life Sci. 2011, 2 (9), 1078-1095.
[14]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 6, p 155.
[15]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 3, p 79.
[16]Yaws, C. L. In Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic; McGraw-Hill: New York, NY, 1999; Chapter 4, p 105.
[17]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[18]Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energ. Convers. Manage. 2002, 43 (6), 863-876.
[19]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[20]Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sust. Energ. Rev. 2007, 11 (9), 1913-1965.
[21]Ismail, K. A. R.; Alves, C. L. F.; Modesto, M. S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Therm. Eng. 2001, 21 (1), 53-77.
[22]Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ Convers. Manage. 2004, 45 (9-10), 1597-1615.
[23]Moreno, E.; Cordobilla, R.; Calvet, T.; Cuevas-Diarte, M. A.; Gbabode, G.; Negrier, P.; Mondieig, D.; Oonk, H. A. J. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J. Chem. 2007, 31 (6), 947-957.
[24]Holderna-Natkaniec, K.; Natkaniec, I. Study of internal vibrations of dl-camphene by IINS method. Physica B 1994, 194-196, 371-372.
[25]Parks, G. S.; Huffman, H. M. Some fusion and transition data for hydrocarbons. Ind. Eng. Chem. 1931, 23 (10), 1138-1139.
[26]Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
[27]Dunning, W. J. Crystallographic studies of plastic crystals. J. Phys. Chem. Solids 1961, 18 (1), 21-27.
[28]Chang, C. Y.; Lee, Y. C.; Wu, P. J.; Liou, J. Y.; Sun, Y. S.; Ko, B. T. Micellar transitions in solvent-annealed thin films of an amphiphilic block copolymer controlled with tunable surface fields. Langmuir 2011, 27 (23), 14545-14553.
[29]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[30]Souza, S. L.; Capitán, M. J.; Álvarez, J.; Funari, S. S.; Lameiro, M. H.; Melo, E. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375.
[31]Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10 (3), 201-205.
[32]Rady, M. A.; Arquis, E.; Le Bot, C. Characterization of granular phase changing composites for thermal energy storage using the T-history method. Int. J. Energ. Res. 2010, 34 (4), 333-344.
[33]Qian, F.; Tao, J.; Desikan, S.; Hussain, M.; Smith, R. L. Mechanistic investigation of pluronic® based nano-crystalline drug-polymer solid dispersions. Pharm. Res. 2007, 24 (8), 1551-1560.
[34]Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56 (10), 978-982.
[35]Kittel, C. In Introduction to solid state physics 2nd Ed.; John Wiley & Sons, Inc.: New York, NY, 1965; Chapter 6, p 118.
[36]Reif, F. In Fundamentals of statistical and thermal physics; McGraw-Hill: New York, NY, 1965; Chapter 7, pp 253-254.
[37]Cooper, A. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophys. Chem. 2000, 85 (1), 25-39.
[38]Lide, D. R. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data 86th Ed.; CRC Press: Boca Raton, 2005; Chapter 12, p 12-202.
[39]Sturtevant, J. M. Heat capacity and entropy changes in processes involving proteins. Proc. Natl. Acad. Sci. 1977, 74 (6), 2236-2240.
[40]Moreno, E.; Cordobilla, R.; Calvet, T.; Cuevas-Diarte, M. A.; Gbabode, G.; Negrier, P.; Mondieig, D.; Oonkc, H. A. J. Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J. Chem. 2007, 31 (6), 947-957.
Chapter 4
[1]Zalba, B.; Marı́na, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251-283.
[2]Verma, P.; Varuna, P. Singal, S. K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sust. Energ. Rev. 2008, 12 (4), 999-1031.
[3]Cedeñoa, F. O.; Prieto, M. M.; Espinac, A.; Garcı́a, J. R. Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim. Acta 2001, 369 (1-2), 39-50.
[4]Peippo, K.; Kauranen, P.; Lund, P. D. A multicomponent PCM wall optimized for passive solar heating. Energ. Buildings 1991, 17 (4), 259-270.
[5]Sari, A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 2003, 23 (8), 1005-1017.
[6]Sari, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 2007, 27 (8-9), 1271-1277.
Appendix A
[1]Masters, B.; So, P. T. C.; Gratton, E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 1997, 72 (6), 2405-2412.
[2]Wickett, R. R.; Visscher, M. O. Structure and function of the epidermal barrier. Am. J. Infect. Control 2006, 34 (10), S98-S110.
[3]Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 1991, 96 (4), 523-526.
[4]Sandby-Møller, J.; Poulsen, T.; Wulf, H. C. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003, 83 (6), 410-413.
[5]Gooris, G. S.; Bouwstra, J. A. Infrared spectroscopic study of stratum corneum model membranes prepared from human ceramides, cholesterol, and fatty acids. Biophys. J. 2007, 92 (8), 2785-2795.
[6]Charalambopoulou, G. C.; Karamertzanis, P.; Kikkinides, E. S.; Stubos, A. K.; Kanellopoulos, N. K.; Papaioannou, A. T. A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm. Res. 2000, 17 (9), 1085-1091.
[7]Corbe, E.; Laugel, C.; Yagoubi, N.; Baillet, A. Role of ceramide structure and its microenvironment on the conformational order of model stratum corneum lipids mixtures: an approach by FTIR spectroscopy. Chem. Phys. Lipids 2007, 146 (2), 67-75.
[8]Zhu, Y.; Imae, T.; Saiwaki, T.; Oka, T. Damage/recovery by additive on lipid membrane as a mimicry of human stratum corneum. Langmuir 2010, 26 (7), 4951-4957.
[9]Di Nardo, A.; Wertz, P.; Giannetti, A.; Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998, 78 (1), 27-30.
[10]Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T.; Takema, Y.; Kita, K. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49 (7), 1466-1476.
[11]de Jagera, M. W.; Goorisa, G. S.; Dolbnyab, I. P.; Ponecc, M.; Bouwstra, J. A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. BBA-Biomembranes 2004, 1664 (2), 132-140.
[12]Anderson, N. G. In Practical Process Research & Development; Academic Press: New York, NY, 2000; pp 81-111.
[13]Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2. Pharm. Technol. 2009, 33 (5), 62-72.
[14]Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-92.
[15]Alexandridis, P.; Olsson, U.; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 1998, 14 (10), 2627-2638.
[16]Souza, S. L.; Capitán, M. J.; Álvarez, J.; Funari, S. S.; Lameiro, M. H.; Melo, E. Phase behavior of aqueous dispersions of mixtures of N-palmitoyl ceramide and cholesterol: a lipid system with ceramide-cholesterol crystalline lamellar phases. J. Phys. Chem. B 2009, 113 (5), 1367-1375. |