博碩士論文 100324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.116.63.174
姓名 吳孟隆(Meng-Long Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以離子液體[Hmim][PF6]進行萃取發酵來提升Clostridium acetobutylicum 產丁醇之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是利用疏水性離子液體[Hmim][PF6]對Clostridium acetobutylicum進行萃取式發酵,以降低發酵液中丁醇濃度來改善產物抑制效應問題,並且搭配活性碳吸附來解決離子液體所造成的毒性問題。以1:1的比例進行萃取發酵時,可降低發酵液中丁醇濃度2.2g/L,而離子液體可經由水洗後真空濃縮來重複利用,但菌體受到毒性的影響則無法繼續生產丁醇。新鮮培養液若接觸離子液體後,用於菌種培養時菌體完全無法生長;但若由活性碳以1 : 10 (w/v) 吸附5分鐘後,用於培養菌體可達到控制組約70 %的丁醇產量,且發酵液經由活性碳吸附亦可降低發酵液中丁醇濃度。但此操作條件應用於萃取發酵後雖移除了2.99 g/L丁醇,但菌體所受的毒性抑制效果仍未見起色。因此未來應尋找較佳的操作條件以達到提昇產量的效果。
摘要(英) In this research, the hydrophobic ionic liquid, [Hmim][PF6] was applied to the extractive fermentation of Clostridium acetobutylicum to remove butanol from the broth. The toxic ionic liquid remained in the broth was adsorbed by activated carbon. During the extraction operation, 2.2 g/L of butanol was removed from the broth. The production of butanol was stopped after the extraction due to the toxicity of residual ionic liquid. C. acetobutylicum cannot grow in the medium which had contact with the ionic liquid. After adsorption by 1 : 10 (w/v) activated carbon for 5 minutes, the production of butanol by C. acetobutylicum can reach 70% of the amount of control experiment . The fermentation after extraction and adsorption can remove 2.99 g/L of butanol in the broth. But the butanol production cannot be enhanced by current operation conditions. It means that more operation conditions should be discussed to find the optimal way to improve the butanol production.
關鍵字(中) ★ 丁醇
★ 離子液體
★ 萃取發酵
★ 活性碳
關鍵字(英) ★ Clostridium acetobutylicum
★ [Hmim][PF6]
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 生質能 3
2-2 丁醇 3
2-2-1 丁醇基本性質 3
2-2-2 丁醇生產方式 4
2-2-3 丁醇的應用 5
2-3 ABE發酵 6
2-3-1 ABE發酵介紹 6
2-3-2 ABE發酵製程改良法 7
2-4 Clostridium 5
2-5 離子液體(Ionic Liquids,ILs) 8
2-5-1 離子液體發展動機 14
2-5-2 離子液體定義 14
2-5-3 離子液體的發展 16
2-5-4 離子液體的性質 16
2-5-5 離子液體的應用 17
2-5-6 離子液體毒性研究 18
2-6 活性碳(Activated carbon,AC) 19
2-6-1 活性碳製造 20
2-6-2 活性碳分類 21
2-6-3 活性碳之物化特性 22
2-6-4 活性碳之應用 25
2-7 吸附基本原理 25
2-7-1 吸附現象 25
2-7-2 吸附種類 27
第三章 材料與方法 30
3-1 實驗材料 30
3-1-1 微生物 30
3-1-2 培養基組成 31
3-1-3 實驗藥品 32
3-1-4 實驗儀器及其他設備 34
3-2 實驗設計與方法 36
3-2-1 菌種保存 36
3-2-2 接種菌體培養 37
3-2-3 攪拌式發酵槽 38
3-2-4 離子液體[Hmim][PF6]製備 39
3-2-5 活性碳降低離子液體毒性測試 41
3-3 分析方法 41
3-3-1菌體量的測定 41
3-3-2 葡萄糖殘量的測定 42
3-3-3 ABE的分析 43
第四章 結果與討論 45
4-1離子液體合成品測試 45
4-2 離子液體重複萃取利用測試 46
4-3 ABE發酵實驗控制組 47
4-4 離子液體萃取發酵實驗 48
4-5 利用活性碳吸附來降低離子液體毒性之可行性測試 49
4-5-1 探討活性碳添加比例對降低離子液體毒性之影響 51
4-5-2 探討活性碳吸附時間對降低離子液體毒性之影響 54
4-6 活性碳吸附對發酵之影響 57
4-7萃取發酵後以活性碳吸附實驗 59
第五章 結論與建議 60
5-1 結論 60
5-2 建議 61
第六章 參考文獻 62
參考文獻 1. 施顏祥, 2012 年能源產業技術白皮書. 2012: 經濟部能源局.
2. Lee, S.Y., J.H. Park, S.H. Jang, L.K. Nielsen, J. Kim, and K.S. Jung, Fermentative butanol production by Clostridia. Biotechnol Bioeng, 2008. 101(2): p. 209-228.
3. 周仕凱 and 許梅娟, 新能源-生物產丁醇. 科學發展, 2009. 433: p. 26-31.
4. Qureshi, N., X.-L. Li, S. Hughes, B.C. Saha, and M.A. Cotta, Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog., 2006. 22: p. 673-680.
5. Qureshi, N., B.C. Saha, and M.A. Cotta, Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng, 2007. 30(6): p. 419-27.
6. Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino, High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004. 98(4): p. 263-268.
7. Ni, Y. and Z. Sun, Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol, 2009. 83(3): p. 415-23.
8. Jones, D.T. and D.R. Woods, Acetone-butanol fermentation revisited. Microbiological Reviews, 1986. 50(4): p. 484-524.
9. Durre, P., Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci, 2008. 1125: p. 353-62.
10. Qureshi, N. and H.P. Blaschek, Recovery of butanol from fermentation broth by gas stripping. Renewable Energy, 2001. 22: p. 557-564.
11. Mariano, A.P., N. Qureshi, R. Maciel Filho, and T.C. Ezeji, Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. Journal of Chemical Technology & Biotechnology, 2012. 87(3): p. 334-340.
12. Friedl, A., N. Qureshi, and I.S. Maddox, Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol. Bioeng., 1991. 38(5): p. 518-527.
13. 黃浩宸, 探討可控式包埋Saccharomyces cerevisiae 對於乙醇醱酵之影響. 國立中央大學化學工程與材料工程學系碩士論文, 2011.
14. 蓋聖文, 探討以疏水性離子液體進行萃取式醱酵對Clostridium acetobutylicum產丁醇之影響. 國立中央大學化學工程與材料工程學系碩士論文, 2012.
15. Ha, S.H., N.L. Mai, and Y.-M. Koo, Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. Process Biochemistry, 2010. 45(12): p. 1899-1903.
16. Yen, H.W. and Y.C. Wang, The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone-butanol-ethanol). Bioresour Technol, 2012.
17. Evans, P.J. and H.Y. Wang, Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Applied and enviromental microbiology, 1988. 54(7): p. 1662-1667.
18. Desai, R.P. and e.T. Papoutsakis, Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl. Environ Microbiol, 1999. 65(3): p. 936-945.
19. Nolling, J., G. Breton, M.V. Omelchenko, K.S. Makarova, Q. Zeng, R. Gibson, H.M. Lee, J. Dubois, D. Qiu, J. Hitti, Y.I. Wolf, R.L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M.J. Daly, G.N. Bennett, E.V. Koonin, and D.R. Smith, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol, 2001. 183(16): p. 4823-38.
20. 李國鏞 and 游若荻, 微生物學. 華香園出版社,第四版, 1992: p. 126-145.
21. 許駿發, 工業技術人才培訓計畫講義-高溫丁醇發酵之理論與應用. 經濟部工業局, 1998.
22. Lutke-Eversloh, T. and H. Bahl, Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol, 2011. 22(5): p. 634-47.
23. 陳勁中, 淺談生質丁醇及未來研發趨勢. 石油通訊, 2011. 716: p. 20-23.
24. Brook, T.D. and M.T. Madigan, Biology of microorganisms 6th. Prentice Hall, 1991.
25. 陳泊余, 離子液體的發展及其在電化學與其它領域的應用-獨特的溶劑系統. THE CHINESE CHEM, 2006. 64(2): p. 235-258.
26. Wilkes, J.S., A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 2002. 4(2): p. 73-80.
27. Keskin, S., D. Kayrak-Talay, U. Akman, and Ö. Hortaçsu, A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids, 2007. 43(1): p. 150-180.
28. Welton, T., Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev., 1999. 99: p. 2071-2083.
29. HURLEY, F.H. and T.P. WIER, The electrodeposition of aluminum from nonaqueous solutions at room temperature Journal of the Electrochemical Society, 1951. 98: p. 207-212.
30. Chum, H.L., V.R. Koch, L.L. Miller, and R.A. Osteryoung, An electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt Journal of the American Chemical Society, 1975. 96: p. 3264-3275.
31. Fannin Jr A. A., D.A. Floreani, L.A. King, J.S. Landers, B.J. Piersma, D.J. Stech, R.L. Vaughn, J.S. Wilkes, and J.L. Williams, Properties of 1,3-dialkylimldazollum chloride-aluminum chloride ionic liquids. 2.Phase transitions, densities, electrical conductivities, and viscosities American Chemical Society, 1984. 88: p. 2614-2621.
32. Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, 1992: p. 965-967.
33. Olivier-Bourbigou, H., L. Magna, and D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 2010. 373(1-2): p. 1-56.
34. Park, S. and R.J. Kazlauskas, Biocatalysis in ionic liquids – advantages beyond green technology. Current Opinion in Biotechnology, 2003. 14(4): p. 432-437.
35. Macfarlane, D.R., M. Forsyth, P.C. Howlett, J.M. Pringle, J. Sun, G. Annat, W. Neil, and E.I. Izgorodina, Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res., 2007. 40: p. 1165-1173.
36. Silvester, D.S., L. Aldous, C. Hardacre, and R.G. Compton, An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids. Journal of Physical Chemistry B, 2007. 111: p. 5000-5007.
37. Jastorff, B., K. Mölter, P. Behrend, U. Bottin-Weber, J. Filser, A. Heimers, B. Ondruschka, J. Ranke, M. Schaefer, H. Schröder, A. Stark, P. Stepnowski, F. Stock, R. Störmann, S. Stolte, U. Welz-Biermann, S. Ziegert, and J. Thöming, Progress in evaluation of risk potential of ionic liquids—basis for an eco-design of sustainable products. Green Chemistry, 2005. 7(5): p. 362.
38. Couling, D.J., R.J. Bernot, K.M. Docherty, J.K. Dixon, and E.J. Maginn, Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chemistry, 2006. 8(1): p. 82.
39. Wells, A.S. and V.T. Coombe, On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Organic Process Research & Development 2006. 10: p. 794-798.
40. Stolte, S., J.r. Arning, U. Bottin-Weber, M. Matzke, F. Stock, K. Thiele, M. Uerdingen, U. Welz-Biermann, B. Jastorff, and J. Ranke, Anion effects on the cytotoxicity of ionic liquids. Green Chemistry, 2006. 8(7): p. 621.
41. L., R.M., H. M., P. Y.P., S. I., K. A.P., and S. J.L., Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat Struct Biol., 1997. 4(1).
42. Stepnowski, P., A.C. Składanowski, A. Ludwiczak, and E. Łaczyńska, Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Human & Experimental Toxicology, 2004. 23(11): p. 513-517.
43. Lewis, I.C., Chemistry of carbonization Carbon, 1982. 20(6): p. 519-529.
44. Okasfe, O. and H. Bosch, The production and characterization of activated carbon. Chem. Age of India, 1980. 31(3).
45. F. Caturla, M. Molina-Sabio, and F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991. 29(7): p. 999-1007.
46. 廖志國, 操作條件對微波再生活性碳效率之影響及產物分析研究. 中山大學環境工程研究所,碩士論文, 1999.
47. 楊沛澤 and 黃宜漢, 活性碳吸附於中鋼廢水處理運用之實例. 技術與訓練, 1998. 23(6): p. 165-176.
48. Biniak, S., M. Pakuła, G.S. Szyman´ski, and A.S.w. tkowski, Effect of Activated Carbon Surface Oxygen- and/or Nitrogen-Containing Groups on Adsorption of Copper(II) Ions from Aqueous Solution. Langmuir 1999. 15: p. 6117-6112.
49. Hall, C.R. and R.J. Holmes, The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine. Carbon, 1992. 30(2): p. 173-176.
50. Boehm, H.P., Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994. 32(5): p. 759-769.
51. Palomar, J., J. Lemus, M.A. Gilarranz, and J.J. Rodriguez, Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon, 2009. 47(7): p. 1846-1856.
52. 蔣本基 and 張璞, 有機溶劑蒸氣之吸附及脫附研究. 工業污染防治, 1996. 第58期.
53. Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar Analytical Chemistry, 1959. 31(3): p. 426-428.
54. Swatloski, R.P., J.D. Holbrey, and R.D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 2003. 5(4): p. 361.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明