博碩士論文 993211012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.144.116.69
姓名 魏延麟(Yen-Lin Wei)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法
(Using Ultrasonic Standing Wave Fields in Association with Self-Assembly Microspheres to Enhance the Efficiency of Molecular Transport in vitro)
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究
★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化
★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究
★ 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了提高細胞治療成效同時能將所應用的藥物輸送系統放大規模,本研究嘗試結合自體組裝之聚苯乙烯微球載體與超聲波駐波場以建構出促進分子傳遞至細胞內效率之方法。本研究係利用硒化鎘 / 硫化鋅量子點模擬藥物分子,將其以層堆疊自體組裝的方式塗佈於聚苯乙烯微球載體之表面製成量子點微米球,並以顯微技術與螢光光譜儀分析成品。實驗結果證明 1) 量子點晶體能夠以 1.0 pmole/cm^2 的容量密度均勻散佈於載體表面, 2) 量子點微米球與獨立量子點也擁有近似的光學性質, 3) 該量子點與載體間的靜電作用可承受環境剪應力之干擾。接著,在確認細胞與微球載體能夠被駐波場牽引至聲壓節面後,我們訂定出最佳的超聲波照射時間為五分鐘,並且證明超聲波駐波場不會對細胞與微球載體造成損害。最後利用流式細胞儀分析細胞經或未經駐波場照射後量子點微球傳遞至其內部之效果,結果顯示出超聲波駐波場可提高含有量子點的細胞數量約 1.2 倍 (P < 0.01) 以及細胞螢光強度約 1.3 倍 (P < 0.01) 。本研究證明了結合超聲波駐波場與微球載體有助於提升載體表面上的分子進入細胞內之效率。
摘要(英) To enhance the cellular therapy efficacy and scale up the drug delivery system used, we aimed to develop a complex molecular delivery system comprising ultrasound standing wave fields (USWF) and microsphere techniques. In this study, CdSe/ZnS quantum dots (QDs) were used to imitate drug molecules and the QDs-coated polystyrene microspheres were prepared through layer-by-layer approach. The developed QDs-coated microspheres were characterized using microscopy and spectrofluorometry, and exhibited that 1) QDs can entirely cover the surface of microspheres with uniform distribution in a coverage rate of 1.0 pmole/cm^2, 2) QDs-covered microspheres exhibited similar optical properties with isolated QDs, and 3) the electrostatic interactions between QDs and microsphere surfaces were robust enough to resist mechanical stress induced by ultrasound. After determining the optimal USWF exposure time of 5 minutes in which the cellular viability was > 90% within 48 h, we examined the efficiency of microspheres internalization of the DH82 macrophages with and without USWF treatment using flow cytometry. Our results showed that the cells with USWF exhibited 1.2-fold (P < 0.01) and 1.3-fold (P < 0.01) higher than the group without USWF in terms of fluorescence-expressed cell number and fluorescence intensity from the cells, respectively. The system of USWF in association with microspheres developed in this study provided a feasible means for enhancement of molecular transport efficiency in vitro.
關鍵字(中) ★ 超聲波駐波場
★ 聚苯乙烯微球
★ 自體組裝
★ 逐層堆疊
★ 分子傳遞
關鍵字(英) ★ Ultrasonic standing wave fields
★ Polystyrene microsphere
★ Self-assembly
★ Layer by layer
★ Molecular transport
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2.1 量子點塗佈微球載體 2
2.1.1 量子點簡介 3
2.1.2 量子點在細胞生物學之應用 8
2.1.3 層堆疊自體組裝合成策略 15
2.2 超聲波駐波場 19
2.2.1 超聲波與壓電效應 20
2.2.2 超聲波在醫學領域之應用 22
2.2.3 超聲波駐波場簡介 25
第三章 實驗藥品、儀器設備與研究方法 28
3.1 實驗藥品 28
3.2 儀器設備 29
3.3 細胞培養 31
3.4 超聲波裝置 32
3.5 研究方法 34
3.5.1 合成親水性 CdSe/ZnS 量子點 34
3.5.2 製作 CdSe/ZnS 量子點塗佈微球載體 35
3.5.3 CdSe/ZnS 量子點塗佈微球載體的光學測定 37
3.5.4 CdSe/ZnS 量子點塗佈微球載體的形態測定 38
3.5.5 CdSe/ZnS 量子點塗佈微球載體的穩定性測定 39
3.5.6 超聲波駐波場影響細胞存活率之測定 41
3.5.7 超聲波駐波場促進微球載體表面分子傳遞至細胞內之測定 43
3.5.8 統計分析 45
第四章 結果與討論 46
4.1 CdSe/ZnS 量子點塗佈微球載體於製程中的電位分析 46
4.2 CdSe/ZnS 量子點塗佈微球載體的形態與光學性質分析 49
4.3 CdSe/ZnS 量子點塗佈微球載體的表面容量分析 51
4.4 CdSe/ZnS 量子點塗佈微球載體的穩定性分析 54
4.5 細胞與 PS 微球載體被超聲波駐波場牽引至節面之現象 56
4.6 細胞經超聲波駐波場曝照後的存活率分析 60
4.7 超聲波駐波場提高載體表面分子傳遞至細胞內效率之分析 62
第五章 結論 66
第六章 參考文獻 67
附錄 75
參考文獻 [1] Christopher B. Murray, David J. Norris, and Moungi G. Bawendi: Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. Journal of American Chemical Society, 1993, 115(19), 8706-8715.
[2] Alf Mews, Alexander Eychmüller, Michael Giersig, Detlef Schooss, and Horst Weller: Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of Physical Chemistry, 1994, 98(3), 934-941.
[3] Margaret A. Hines, and Philippe Guyot-Sionnest: Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. The Journal of Physical Chemistry, 1996, 100(2), 468-471.
[4] Z. Adam Peng, and Xiaogang Peng: Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. Journal of the American Chemical Society, 2001, 123(1), 183-184.
[5] Xavier Michalet, Fabien F. Pinaud, Laurent A. Bentolila, James M. Tsay, Soren Doose, Jack J. Li, Gobalakrishnan Sundaresan, Anna M. Wu, Sanjiv S. Gambhir, and Shimon Weiss: Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307(5709), 538-544.
[6] Matt Trau, and Bronwyn J. Battersby: Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Advanced Materials, 2001, 13(12-13), 975-979.
[7] Mingyong Han, Xiaohu Gao, Jack Z. Su, and Shuming Nie: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19(7), 631-635.
[8] Claudine Ni Allen, Nicolas Lequeux, Christophe Chassenieux, Gilles Tessier, and Benoit Dubertret: Optical analysis of beads encoded with quantum dots coated with a cationic polymer. Advanced Materials, 2007, 19, 4420-4425.
[9] Marcel Bruchez Jr., Mario Moronne, Peter Gin, Shimon Weiss, and A. Paul Alivisatos: Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281(5385), 2013-2016.
[10] Chun-Yang Zhang, Hsin-Chih Yeh, Marcos T. Kuroki, and Tza-Huei Wang: Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005, 4, 826-831.
[11] Ellen R. Goldman, Eric D. Balighian, Hedi Mattoussi, M. Kenneth Kuno, J. Matthew Mauro, Phan T. Tran, and George P. Anderson: “Avidin: A Natural Bridge for Quantum Dot-Antibody.” Journal of the American Chemical Society, 2002, 124(22), 6378-6382.
[12] Alyona Sukhanova, Lydie Venteo, Jérôme Devy, Mikhail Artemyev, Vladimir Oleinikov, Michel Pluot, and Igor Nabiev: Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Laboratory Investigation, 2002, 82(9), 1259-1261.
[13] Fabien Pinaud, David King, Hsiao-Ping Moore, and Shimon Weiss: Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides. Journal of the American Chemical Society, 2004, 126(9), 6115-6123.
[14] Benoit Dubertret, Paris Skourides, David J. Norris, Vincent Noireaux, Ali H. Brivanlou, and Albert Libchaber: In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298(5599), 1759-1762.
[15] Iain Johnson: Fluorescent probes for living cells. Histochemical Journal, 1998, 30, 123-140.
[16] Meir Wilchek, and Edward A. Bayer: Avidin-biotin technology ten years on: has it lived up to its expectations? Trends in Biochemical Sciences, 1989, 14(10), 408-412.
[17] Warren C. W. Chan, and Shuming Nie: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[18] Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman, and Hedi Mattoussi: Quantum dot bioconjugates for imaging, labelling and sensing. Materials, 2005, 4, 435-446.
[19] Srikant Pathak, Soo-Kyung Choi, Norman Arnheim, and Mark E. Thompson: Hydroxylated quantum dots as luminescent probes for in situ hybridization. Journal of the American Chemical Society, 2001, 123(17), 4103-4104.
[20] Teresa Pellegrino, Wolfgang J. Parak, Rosanne Boudreau, Mark A. Le Gros, Daniele Gerion, A. Paul Alivisatos, and Carolyn A. Larabell: Quantum dot-based cell motility assay. Differentiation, 2003, 71(9-10), 542-548.
[21] Xingyong Wu, Hongjian Liu, Jianquan Liu, Kari N. Haley, Joseph A. Treadway, J. Peter Larson, Nianfeng Ge, Frank Peale, and Marcel P. Bruchez: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003, 21(1), 41-46.
[22] Alyona Sukhanova, Jérôme Devy, Lydie Venteo, Hervé Kaplan, Mikhail Artemyev, Vladimir Oleinikov, Dmitry Klinov, Michel Pluot, Jacques H. M. Cohen, and Igor Nabiev: Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 2004, 324(1), 60-67.
[23] Austin M. Derfus, Warren C. W. Chan, and Sangeeta N. Bhatia: Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials, 2004, 16(12), 961-966.
[24] Jian Yang, Mark P. Sena, and Xiaohu Gao: Quantum dot-encoded fluorescent beads for biodetection and imaging. Reviews in Fluorescence, 2009, 2007, 139-156.
[25] Andrey L. Rogach, Andrei S. Susha, Frank Caruso, Gleb. B. Sukhorukov, Andreas Kornowski, Stephen V. Kershaw, Helmuth Möhwald, Alexander Eychmüller, and Horst Weller: Nano- and microengineering: Three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres precoated with luminescent polyelectrolyte/nanocrystal shells. Advanced Materials, 2000, 12(5), 333-337.
[26] Andrey L. Rogach, Dattatri Nagesha, John W. Ostrander, Michael Giersig, and Nicholas A. Kotov: “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chemistry of Materials, 2000, 12(9), 2676-2685.
[27] Yu-Hsiang Lee, Ching-Shiow Tseng, and Yen-Lin Wei: Fabrication and characterization of CdSe/ZnS quantum dots-doped polystyrene microspheres prepared by self-assembly. Journal of Materials Research, 2012, 27(22), 2829-2836.
[28] Shicheng Zhang, Jie Chen, and Xingguo Li: Preparation of uniform CdSe/polyelectrolyte multilayers on the surface of SiO2 spheres. Nanotechnology, 2004, 15(5), 477-479.
[29] Yinthai Chan, John P. Zimmer, Mark Stroh, Jonathan S. Steckel, Rakesh K. Jain, and Moungi G. Bawendi: Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres. Advanced Materials, 2004, 16(23-24), 2092-2097.
[30] Ralph G. Nuzzo, and David L. Allara: Adsorption of bifunctional organic disulfides on gold surfaces. Journal of American Chemical Society, 1983, 105(13), 4481-4483.
[31] Zhiyong Tang, Ying Wang, Paul Podsiadlo, and Nicholas A. Kotov: Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Advanced Materials, 2006, 18(24), 3203-3224.
[32] Gero Decher: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 1997, 277(5330), 1232-1237.
[33] Katsuhiko Ariga, Yuri M. Lvov, Kohsaku Kawakami, Qingmin Ji, and Jonathan P. Hill: Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63(9), 762-771.
[34] http://bme240.eng.uci.edu/students/06s/yuhsianh/Piezoelctric%20effect.htm
[35] Kenneth S. Suslick: The chemical effects of ultrasound. Scientific American, 1989, February, 80-86.
[36] Amir Manbachi, and Richard S. C. Cobbold: Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound, 2011, 19(4), 187-196.
[37] Gen Shirane, Etsuro Sawaguchi, and Yutaka Takagi: Dielectric properties of lead zirconate. Physical Review, 1951, 84(3), 476-481.
[38] Tingkai Li, Peter A. Zawadzki, Richard A. Stall, and William J. Kroll: Ferroelectric PbZr1-xTixO3 thin films made by various metalorganic chemical vapor deposition techniques. Proceedings of the SPIE, 1997, 3008, 359-364.
[39] Kazuyoshi Tsuchiya, Toshiaki Kitagawa, and Eiji Nakamachi: Study for piezoelectric characterization of PZT actuators deposited by RF magnetron sputtering for MEMS. Proceedings of the SPIE, 2002, 4936, 225-233.
[40] S. K. Pandey, A. R. James, Chandra Prakash, T. C. Goel, and K. Zimik: Electrical properties of PZT thin films grown by sol-gel and PLD using a seed layer. Materials Science & Engineering B, 2004, 112(1), 96-100.
[41] Oliver Huang, Amit Bandyopadhyay, and Susmita Bose: Influence of processing parameters on PZT thick films. Materials Science & Engineering B, 2005, 116(1), 19-24.
[42] Marie-Hélène R. Cardinal, Jean Meunier, Gilles Soulez, Roch L. Maurice, Éric Therasse, and Guy Cloutier: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Transactions on Medical Imaging, 2006, 25(5), 590-601.
[43] Shahram Vaezy, Victor Y. Fujimoto, Cheryl Walker, Roy W. Martin, Emil Y. Chi, and Lawrence A. Crum: Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound. American Journal of Obstetrics and Gynecology, 2000, 183(1), 6-11.
[44] Gail ter Haar, Daniel Sinnett, and Ian Rivens: High intensity focused ultrasound-a surgical technique for the treatment of discrete liver tumours. Physics in Medicine and Biology, 1989, 34(11), 1743-1750.
[45] William J. Greenleaf, Mark E. Bolander, Gobinda Sarkar, Mary B. Goldring, and James F. Greenleaf: Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection. Ultrasound in Medicine & Biology, 1998, 24(4), 587-595.
[46] Sandra Koch, Peter Pohl, Ulrich Cobet, and Nikolai G. Rainov: Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound in Medicine & Biology, 2000, 26(5), 897-903.
[47] Darrell B. Tata, Floyd Dunn, and Donald J. Tindall: Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochemical & Biophysical Research Communications, 1997, 234(1), 64-67.
[48] Hee Joong Kim, James F. Greenleaf, Randall R. Kinnick, James T. Bronk, and Mark E. Bolander: Ultrasound-mediated transfection of mammalian cells. Human Gene Therapy, 1996, 7(11), 1339-1346.
[49] Yu-Hsiang Lee, Jin-Oh You, and Ching-An Peng: Retroviral transduction of adherent cells in resonant acoustic fields. Biotechnology Progress, 2005, 21(2), 372-376.
[50] Jeremy J. Hawkes, M. S. Limaye, and W. Terence Coakley: Filtration of bacteria and yeast by ultrasound-enhanced sedimentation. Journal of Applied Microbiology, 1997, 82(1), 39-47.
[51] David W. Bardsley, J. Eryl Liddell, W. Terence Coakley, and David J. Clarke: Electroacoustic production of murine hybridomas. Journal of Immunological Methods, 1990, 129(1), 41-47.
[52] Martin A. Grundy, Werner E. Bolek, W. Terence Coakley, and Ewald Benes: Rapid agglutination testing in an ultrasonic standing wave. Journal of Immunological Methods, 1993, 165(1), 47-57.
[53] W. Terence Coakley: Ultrasonic separations in analytical biotechnology. Trends in Biotechnology, 1997, 15(12), 506-511.
[54] Glenn Whitworth, and W. Terence Coakley: Particle column formation in a stationary ultrasonic field. Journal of the Acoustical Society of America, 1992, 91(1), 79-85.
[55] Jeremy J. Hawkes, Joseph J. Cefai, David A. Barrow, W. Terence Coakley, and L. Greg Briarty: Ultrasonic manipulation of particles in microgravity. Journal of Physics D: Applied Physics, 1998, 31(14), 1673-1680.
[56] W. Terence Coakley, David W. Bardsley, Martin A. Grundy, Freidoun Zamani, and David J. Clarke: Cell manipulation in ultrasonic standing wave fields. Journal of Chemical Technology & Biotechnology, 1989, 44(1), 43-62.
[57] M. S. Limaye, Jeremy J. Hawkes, and W. Terence Coakley: Ultrasonic standing wave removal of microorganisms from suspension in small batch systems. Journal of Microbiological Methods, 1996, 27(2-3), 211-220.
[58] Douglas L. Miller: A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound in Medicine & Biology, 1987, 13(8), 443-470.
[59] Otto Doblhoff-Dier, Theo Gaida, Hermann Katinger, Wolfgang Burger, Martin Gröschl, and Nieck E. Benes: A novel ultrasonic resonance field device for the retention of animal cells. Biotechnology Progress, 1994, 10(4), 428-432.
[60] Stefan Radel, Aiden J. McLoughlin, Lisa Gherardini, Otto Doblhoff-Dier, and Nieck E. Benes: Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves. Ultrasonics, 2000, 38(1-8), 633-637.
[61] W. William Yu, Lianhua Qu, Wenzhuo Guo, and Xiaogang Peng: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 2003, 15(14), 2854-2860.
[62] Daniel E. Gómez, Isabel Pastoriza-Santos, and Paul Mulvaney: Tunable whispering gallery mode emission from quantum-dot-doped microspheres. Small, 2005, 1(2), 238-241.
[63] Hedi Mattoussi, Andrew W. Cumming, Christopher B. Murray, Moungi G. Bawendi, and Raymond Ober: Characterization of CdSe nanocrystallite dispersions by small angle x-ray scattering. Journal of Chemical Physics, 1996, 105(22), 9890-9896.
[64] Yang Li, Eric Chun Yeung Liu, Nigel Pickett, Peter J. Skabara, Siobhan S. Cummins, Stephen Ryley, Andrew J. Sutherland, and Paul O’Brien: Synthesis and characterization of CdS quantum dots in polystyrene microbeads. Journal of Materials Chemistry, 2005, 15(12), 1238-1243.
[65] Johannes Schmitt, P. Mächtle, Dirk Eck, Helmuth Möhwald, and Christiane A. Helm: Preparation and optical properties of colloidal gold monolayers. Langmuir, 1999, 15(9), 3256-3266.
[66] M. A. H. Weiser, R. E. Apfel, and E. A. Neppiras: Interparticle forces on red cells in a standing wave field. Acustica, 1984, 56(2), 114-119.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明