參考文獻 |
1. International Energy Agency, Key World Energy Statistics, 2012.
2. William I. F. David, “Effective hydrogen storage:a strategic chemistry challenge”, Faraday Discuss., 151 (2011) 399-414.
3. L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications”, NATURE, 414 (2001) 353-358.
4. E. Akiba, “Hydrogen-absorbing alloys”, Curr. Opin. Solid State Mater. Sci., 4 (1999) 267-272.
5. Li Zhou, “Progress and problems in hydrogen storage methods”, Renew. Sust. Energ. Rev., 9 (2005) 395-408.
6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, “Storage of hydrogen in Single-walled carbon nanotubes”, Nature, 386 (1997) 377-379.
7. Ziwei Tang, Hao Chen, Xiaowei Chen, Limin Wu, Xuebin Yu, “Graphene Oxide Based Recyclable Dehydrogenation of Ammonia Borane within a Hybrid Nanostructure”, J. Am. Chem. Soc., 134 (2012) 5464-5467.
8. A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, “LiBH4 a new hydrogen storage material”, J. Power Sources., 118 (2003) 1-7.
9. Ping Chen, Zhitao Xiong, Jizhong Luo, Jianyi Lin, Kuang Lee Tan, “Interaction of hydrogen with metal nitrides and imides”, Nature, 420 (2002) 302-304.
10. B. Bogdanovic, M. Schwickardi, “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd., 253-254 (1997) 1-9.
11. I.P. Jain, P. Jain, A. Jain, “Novel Hydrogen Storage Materials: A Review of Lightweight Complex Hydrides”, J. Alloys Compd., 503 (2010) 303-339.
12. A. Andreasena,T. Veggea, A.S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem., 178 (2005) 3672-3678.
13. D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater. Sci. Eng., B, 108 (2004) 54–59.
14. M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1413-1416.
15. Xueping Zheng, Xuanhui Qu, Islam S. Humail, Ping Li, GuoqingWang, “ Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int. J. Hydrogen Energy, 32 (2007) 1141-1144.
16. J.R. Ares Fernandez, F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim, T. Klassen, R. Bormann, “Mechanical and thermal decomposition of LiAlH4 with metal halides” , Int. J. Hydrogen Energy, 32 (2007) 1033-1040.
17. T. Sun, C.K. Huang, H. Wang, L.X. Sun, M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int. J. Hydrogen Energy, 33 (2008) 6216-6221.
18. Zheng Xueping, Liu Shenglin, “Study on hydrogen storage properties of LiAlH4”, J. Alloys Compd., 481 (2009) 761-763.
19. M. Naika, S. Rathera, C. S. Sob, S. W. Hwanga, A. R. Kimb, K. S. Nahma, “Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides”, Int. J. Hydrogen Energy, 34 (2009) 8937-8943.
20. S. Liu, L. Sun, Y. Zhang, F. Xu, J. Zhang, H. Chu, M. Fan, T. Zhang, X. Song, J. P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int. J. Hydrogen Energy, 34 (2009) 8079–8085.
21. M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, “Effects of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2361–2367.
22. Pramoch Rangsunvigit, Phunsup Purasaka, Thanyaluck Chaisuwan, Boonyarach Kitiyanan, Santi Kulprathipanja, “Effects of Carbon-based Materials and Catalysts on the Hydrogen Desorption/Absorption of LiAlH4”, Chem. Lett., 41 ( 2012) 1368-1370.
23. Zheng Xueping, Li Ping, An Fuqiang, Wang Guoqing, Qu Xuanhui, “Effects of Ti and Fe Additives on Hydrogen Release from Lithium Alanate”, Rare Metal Mat. Eng., 37 (2008) 400-403
24. X. Zheng, P. Li, X. Qu, “Effect of Additives on the Reversibility of Lithium Alanate (LiAlH4)”, Rare Met. Mater. Eng., 38 (2009) 766-769.
25. M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, “Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite”, Int. J. Hydrogen Energy, 36 (2011) 3593-3599.
26. R. A. Varin, L. Zbroniec, “The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH4)”, J. Alloys Compd., 506 (2010) 928–939.
27. R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate)”, Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
28. Robert A. Varin, Roozbeh Parviz, ”The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation”, Int. J. Hydrogen Energy, 37 (2012) 9088-9102.
29. Jennifer L. Wohlwend, Placidus B. Amama, Patrick J. Shamberger, Vikas Varshney, Ajit K. Roy, Timothy S. Fisher, “Effects of Titanium-Containing Additives on the Dehydrogenation Properties of LiAlH4: A Computational and Experimental Study”, J. Phys. Chem. C, 116 (2012) 22327-22335.
30. Zhibao Li, Shusheng Liu, Xiaoliang Si, Jian Zhang, Chengli Jiao, Shuang Wang, Shuang Liu, Yong-Jin Zou, Lixian Sun, Fen Xu, “Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6”, Int. J. Hydrogen Energy, 37 (2012) 3261-3267.
31. Fuqiang Zhai, Ping Li, Aizhi Sun, Shen Wu, Qi Wan, Weina Zhang, Yunlong Li, Liqun Cui, Xuanhui Qu, “Significantly Improved Dehydrogenation of LiAlH4 Destabilized by MnFe2O4 Nanoparticles”, J. Phys. Chem. C, 116 (2012) 11939-11945.
32. M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1417-1421.
33. M. Ismail, Y. Zhao, X.B. Yu, I. P. Nevirkovets, S.X. Dou, “Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder”, Int. J. Hydrogen Energy, 36 (2011) 8327-8334.
34. Rafi-ud-din, Qu Xuanhui, Li Ping, Lin Zhang, Mashkoor Ahmad, “Hydrogen Sorption Improvement of LiAlH4 Catalyzed by Nb2O5 and Cr2O3 Nanoparticles”, J. Phys. Chem. C, 11 (2011) 13088-13099.
35. Andrew W. Vittetoe, Michael U. Niemann, Sesha S. Srinivasan, KimberlyMcGrath, Ashok Kumar, D. Yogi Goswami, Elias K. Stefanakos, Sylvia Thomas, “Destabilization of LiAlH4 by nanocrystalline MgH2”, Int. J. Hydrogen Energy, 34 (2009) 2333-2339.
36. Shu-Sheng Liu, Zhi-Bao Li, Cheng-Li Jiao, Xiao-Liang Si, Li-Ni Yang, Jian Zhang, Huai-Ying Zhou, Feng-Lei Huang, Zelimir Gabelica, Christoph Schick, Li-Xian Sun, Fen Xu, “Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2”, Int. J. Hydrogen Energy, 38 (2013) 2770-2777.
37. L. H. Kumar, B. Viswanathan, S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres”, Int. J. Hydrogen Energy, 33 (2008) 366-373.
38. M. Sterlin Leo Hudson, Himanshu Raghubanshi, D. Pukazhselvan, O.N. Srivastava, “Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2083-2090.
39. Joseph A. Teprovich Jr., Douglas A. Knight, Matthew S. Wellons, Ragaiy Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4”, J. Alloys Compd., 509 (2011) 562-566.
40. Rafi-ud-din, Lin Zhang, Li Ping, Qu Xuanhui, “Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4”, J. Alloys Compd., 508 (2010) 119-128.
41. Jorge Íñiguez, T. Yildirim, T. J. Udovic, M. Sulic, and C. M. Jensen, “Structure and hydrogen dynamics of pure and Ti-doped sodium alanate”, Phys. Rev. B., 70 (2004) 060101.
42. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4”, Nano Lett., 9 (4) (2011) 1501-1505.
43. Allen, M.J., V.C. Tung, R.B. Kaner, “Honeycomb Carbon: A Review of Graphene” Chem. Rev., 110 (2009) 132-145.
44. A. K. Geim, K. S. Novoselov, “The rise of grapheme”, Nature materials. 6 (2007) 183-191.
45. Juan Xu, Rongrong Meng, Jianyu Cao, Xiaofang Gu, Zhongqing Qi, Wenchang Wang, Zhidong Chen, “Enhanced dehydrogenation and rehydrogenation properties of LiBH4 catalyzed by grapheme”, Int. J. Hydrogen Energy, 38 (2013) 2796-2803.
46. Yu XB, Wu Z, Chen QR, Li ZL, Weng BC, Huang TS., “Improved hydrogen storage properties of LiBH4 destabilized by carbon” , Appl Phys Lett,. 90 (2007) 034106.
47. Zhang Y, Zhang WS, Wang AQ, Sun LX, Fan MQ, Chu HL, “LiBH4 nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms”, Int. J. Hydrogen Energy, 32 (2007) 3976-3980.
48. Philipp Adelhel, Petra E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides”, J. Mater. Chem., 21 (2011) 2417-2427.
49. R. Arrigo, PhD thesis, “Nitrogen Functionalization of CNFs and Application in Heterogeneous Catalysis”, Technical University Berlin, Berlin, (2009) 1-184
50. Alexander A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”, Nature materials. 10 (2011) 569-581.
51. Juan Xu, Rongrong Meng, Jianyu Cao, Xiaofang Gu, Wei-Li Song, Zhongqing Qi,Wenchang Wang, Zhidong Chen, “Graphene-supported Pd catalysts for reversible hydrogen storage in LiBH4”, J. Alloys Compd., 564 (2013) 84-90.
52. Meganne Christian, Kondo-Francois Aguey-Zinsou, “Destabilisation of complex hydrides through size effects”, Nanoscale, 2 (2010) 2587-2590.
53. Juan Xu, Xuebin Yu, Zhiqing Zou, Zhilin Li, Zhu Wu, Daniel L. Akins, Hui Yang, “Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles”, Chem. Commun., (2008) 5740-5742.
54. W. Leitner, “Green chemistry: Designed to dissolve”, Nature, 405 (2000) 129-130.
55. E. J. Beckman, “Supercritical and near-critical CO2 in green chemical synthesis and processing”, J. Supercrit. Fluids, 28 (2004) 121-191.
56. J. M. DeSimone, “Practical Approaches to Green Solvents”, Science, 297 (2002) 799-803.
57. J.B. Rubin, L.B. Davenhall, C.M.V. Taylor, L.D. Sivils, T. Pierce, “CO2-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents”.
58. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldie, M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles”, J. Mater. Chem., 17 (2007) 2679-2694.
59. Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, “Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell”, J. Phys. Chem. B, 108 (2004) 8234-8240.
60. C. T. Hsieh, J. Y. Lin, J. L. Wei, “Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes”, Int. J. Hydrogen Energy, 34 (2009) 685-693.
61. Ying Zhang, Can Erkey, “Preparation of supported metallic nanoparticles using supercritical fluids: A review”, J. Supercrit. Fluids, 38 (2006) 252-267.
62. Chih-Yao Chen, Kuan-Yu Lin, Wen-Ta Tsai, Jeng-Kuei Chang, Chuan-Ming Tseng, “Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite”, Int. J. Hydrogen Energy, 35 (2010) 5490-5497.
63. Chih-Yao Chen, Jeng-Kuei Chang, Wen-Ta Tsai and Chun-Hung Hung, “Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover” J. Mater. Chem., 21 (2011) 19063-19068.
64. Pin-Ju Tsai, Cheng-Hsien Yang, Wei-Che Hsu, Wen-Ta Tsai, Jeng-Kuei Chang, “Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid”, Int. J. Hydrogen Energy, 37 (2012) 6714-6720.
65. Wu Tianbin, Zhang Peng, Ma Jun, Fan Honglei, Wang Weitao, JiangTao, Han Buxing, “Catalytic activity of immobilized Ru nanoparticles in a porous metal‐organic framework using supercritical fluid”, Chinese Journal of Catalysis, 34 (2013) 167-175.
66. Raja S. Chellappa, Dhanesh Chandra, Stephen A. Gramsch, Russell J. Hemley, Jung-Fu Lin and Yang Song, “Pressure-Induced Phase Transformations in LiAlH4”, J. Phys. Chem. B, 110 (2006) 11088-11097. |