博碩士論文 100329004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.217.246.148
姓名 江得豪(De-hao Jiang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
(Supercritical fluid assisted synthesis of graphene/metal nanoparticle composite catalysts for improving dehydrogenation performance of LiAlH4)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 陽極沉積釩氧化物於離子液體中之擬電容行為★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性
★ 高壓氫壓縮機用之儲氫合金開發★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 離子液體電解質應用於石墨烯超級電容之特性分析
★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氫化鋁鋰 (LiAlH4)具有很高的氫密度,是極具潛力的儲氫材料。因此本研究嘗試改善氫化鋁鋰的放氫特性。實驗過程中分別添加各式碳材、複合觸媒及其他各式催化劑與氫化鋁鋰相互球磨,並利用熱程控脫附儀 (TPD)進行放氫實驗分析。實驗結果發現以超臨界二氧化碳(scCO2)合成之鐵/石墨烯複合觸媒擁有最佳的催化放氫性質,且效果也優於文獻上最佳的催化劑氯化釩 (VCl3)及二氧化鈦 (TiO2)。後續進行材料分析發現,此複合觸媒經由超臨界製程後,形成奈米級的鐵均勻分布於片狀的石墨烯上;與傳統化學沉積法所看到的團聚現象有顯著差異。因此尺寸效應與分布為影響催化放氫性質的重要因素。
本研究後續進行了100 oC恆溫放氫動力學研究,從實驗結果發現經球磨30分鐘後之氫化鋁鋰需10.8小時才能達到4 wt%放氫量,而添加了10 wt%鐵/石墨烯複合觸媒後,僅需10分鐘便能達到相同的放氫量。根據本研究之結果,藉由超臨界二氧化碳所合成之鐵/石墨烯複合觸媒能最有效的改善氫化鋁鋰放氫性質。
摘要(英) Lithium aluminum hydride (LiAlH4)has high hydrogen density so it’s a potential hydrogen storage materials. In this study, we tried to improve the hydrogen storage properties of LiAlH4 by ball milling process. We introduced different carbon materials, metal/carbon composites, other catalysts. According to Temperature-Programmed Desorption (TPD)analysis, We found that by Supercritical carbon dioxide (scCO2)process synthesized Fe/Graphene composites obviously decreased the dehydrogenation temperature of LiAlH4. It’s catalytic effect better than VCl3, TiO2. By the materials analysis, between air process and scCO2 process, the later is more monodisperse than air process. So size effect and distribution play the most important role to improve catalytic properties.
At 100 oC isothermal dehydrogenation dynamics analysis, LiAlH4 (BM30 min)release 4 wt% hydrogen after 10.8 hr while LiAlH4 + 10 wt% Fe/Graphene only need 10 minute. The results of experimental indicate that the Fe/Graphene is the best catalyst for LiAlH4.
關鍵字(中) ★ 氫化鋁鋰
★ 儲氫材料
★ 石墨烯
★ 超臨界二氧化碳
關鍵字(英)
論文目次 總目錄
摘要 I
Abstract II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 VIII
一、 前言 1
二、 研究背景與文獻回顧 5
2.1儲氫材料分類 5
2.2複合型氫化物 6
2.2.1改善複合型氫化物之儲氫性質 7
2.2.2氫化鋁鋰催化劑添加之研究 8
2.3石墨烯 10
2.4複合材料添加之研究 12
2.5尺寸的影響 13
2.6超臨界二氧化碳 14
2.6.1藉由超臨界二氧化碳於碳材上擔載金屬奈米顆粒 15
三、 研究內容與方法 29
3.1各式催化劑 29
3.1.1石墨烯 29
3.1.2利用超臨界二氧化碳及傳統化學沉積法合成之複合觸媒 29
3.2混合方法與放氫性質之分析 30
3.2.1機械球磨法 30
3.2.2熱程控脫附儀 (Temperature-programmed Desorption, TPD) 31
3.3材料分析 31
3.3.1熱重分析儀 (Thermogravimetric Analysis, TGA) 31
3.3.2 X光繞射儀 (X-Ray Diffractometer, XRD) 32
3.3.3臨場X光繞射 (In-situ XRD) 32
3.3.4掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 32
3.3.5高解析掃描穿透式電子顯微鏡 (High-Resolution Transmission Electron Microscopy, HR-TEM) 32
四、 實驗結果與討論 37
4.1 LiAlH4原材料分析 37
4.2各式碳材之催化效果分析 37
4.3複合觸媒之催化效果分析 38
4.3.1各式金屬複合觸媒之催化效果分析 39
4.3.2 以各式碳材作為複合觸媒之基材並比較催化效果 40
4.4超臨界流體製程與傳統化學沉積法之效果分析 41
4.5 深入探討scCO2鐵/石墨烯複合觸媒 42
4.5.1尺寸效應 43
4.5.2與文獻最佳催化劑之催化效果比較 43
4-6 In-situ XRD分析 44
4.7 恆溫放氫動力學測試 45
五、 結論 69
六、 參考文獻 70
表目錄
表2-1 各種複合型氫化物之理論儲氫量與放氫溫度比較表。 17
表2-2 LiAlH4三階段放氫量、溫度比較表。 17
表2-3各種催化劑對LiAlH4之催化效果整理表。 18
表2-4不同碳材之導熱係數值之比較。 20
表2-5典型的有機溶劑在液態、氣態、超臨界態之物理化學特性比較。 20
表2-6超臨界流體應用於儲氫材料之文獻整理表。 21
表4-1 LiAlH4原材、LiAlH4球磨30分鐘與LiAlH4添加2.5 wt% 各式碳材之放氫特性比較表。.....................................................................47
表4-2 LiAlH4添加2.5 wt% 各式金屬/石墨烯複合觸媒之放氫特性比較表。 47
表4-3 LiAlH4添加2.5 wt% 各式鐵/碳材複合觸媒之放氫特性比較表。 48
表4- 4各式碳材氧含量及比表面積 48
表4-5 LiAlH4添加2.5 wt% 空氣及超臨界二氧化碳製程之鐵/石墨烯複合觸媒之放氫特性比較表。 48
表4-6 LiAlH4添加2.5 wt% 空氣及超臨界二氧化碳製程之鎳/石墨烯複合觸媒之放氫特性比較表。 49
表4-7 LiAlH4添加2.5 wt% 及10 wt% 之鐵/石墨烯複合觸媒之放氫特性比較表。 49
表4-8 LiAlH4添加2.5 wt% 鐵粉、鐵粉/石墨烯、鐵/石墨烯複合觸媒之放氫特性比較表。 49
表4-9 LiAlH4添加2.5 wt% TiO2、VCl3、鐵/石墨烯複合觸媒之放氫特性比較表。 50
表4-10 In-situ XRD各種相存在之溫度區間表。 50
表4-11 TPD分析BM30 min、2.5 wt% Ni/Graphene、2.5 wt% Fe/Graphene之第一階段放氫結束溫度比較圖。 50
圖目錄
圖1-1 1971年至2010年的全球燃料消耗量示意圖。 3
圖1-2 1971年至2010年的全球二氧化碳排放量示意圖。 3
圖1-3各種能源用於交通工具之市場趨勢圖。 4
圖1-4 以不同方式壓縮儲存4 Kg氫氣的體積比較圖。 4
圖2-1各種儲氫材料之理論重量及體積儲氫密度示意圖。.............. 22
圖2-2 LiAlH4球磨1、2、6、10小時後於130 ℃之恆溫放氫動力學曲線圖。 22
圖2-3各種奈米碳材之曲率、電負度與氫移除能關係圖。 23
圖2-4以石墨烯為基礎進而組成其他維度碳材料之示意圖。 23
圖2-5石墨烯邊緣存在之官能基示意圖。 24
圖2-6利用濕化學法將三種複合氫化物封進奈米碳管示意圖。 25
圖2-7未經處理LiAlH4及添加2 mol% 微米與奈米級Nb2O5, Cr2O3之放氫曲線圖。 26
圖2-8未經處理LiAlH4、球磨30分鐘LiAlH4及添加2 mol% 微米與奈米級TiH2之放氫曲線圖。 26
圖2-9 LiAlH4 + MgH2與LiAlH4 + nano MgH2之TPD放氫曲線圖。 27
圖2-10放氫反應曲線圖 (a)未經處理LiBH4 (b)LiBH4 + 10 wt% Pt/C, Pt-4.7 nm (c) LiBH4 + 10 wt% Pt/C, Pt-16.0 nm。 27
圖2-11二氧化碳之二維相圖。 28
圖2-12 二氧化碳之二維溫度-壓力-密度關係圖。 28
圖3-1實驗流程示意圖。... ..................................................................34
圖3-2各式複合觸媒合成及分析流程圖。 35
圖3-3超臨界流體設備示意圖。 36
圖3-4 TPD實驗設備示意圖。 36
圖4-1 LiAlH4與球磨30分鐘之TPD曲線圖。.............................. ....51
圖4-2 SEM微觀結構圖 (a) LiAlH4 (b)原材球磨30分鐘。 51
圖4-3 LiAlH4添加2.5 wt% C60、碳黑、活性碳、石墨、多壁奈米碳管、石墨烯之TPD曲線圖。 52
圖4-4 SEM微觀結構圖 (a)活性碳 (b)碳黑 (c)多壁奈米碳管 (d)石墨烯。 53
圖4-5 TEM微觀結構圖 (a)scCO2 Au/Graphene (b)scCO2 Pd/MWCNTs。 53
圖4-6 LiAlH4添加2.5 wt% 銅、金、鈀、鎳、鐵/石墨烯各式複合觸媒之TPD曲線圖。 54
圖4-7 LiAlH4、BM30分鐘、LiAlH4 + 2.5 wt% 鐵/石墨烯之拉曼光譜分析圖 54
圖4-8 LiAlH4添加2.5 wt% 鐵/活性碳、碳黑、多壁奈米碳管、石墨烯各式複合觸媒之TPD曲線圖。 55
圖4-9 TEM微觀結構圖 (a)鐵/活性碳 (b)鐵/碳黑 (c)鐵/奈米碳管 (d)鐵/石墨烯。 56
圖4-10 氧含量對LiAlH4與複合觸媒之間的交互作用之影響示意圖。 57
圖4-11 奈米鐵於活性碳與石墨烯之分布情形示意圖。 57
圖4-12 LiAlH4添加2.5 wt% 空氣及超臨界二氧化碳製程之鐵/石墨烯複合觸媒之TPD曲線圖。 58
圖4-13 LiAlH4添加2.5 wt% 空氣及超臨界二氧化碳製程之鎳/石墨烯複合觸媒之TPD曲線圖。 58
圖4-14 石墨烯TEM微觀結構圖 (a)低倍率 (b)高倍率。 59
圖4-15 scCO2鐵/石墨烯複合觸媒TEM微觀結構圖 (a)低倍率 (b)高倍率(c)EDS成份分析。 59
圖4-16 air鐵/石墨烯複合觸媒TEM微觀結構圖 (a)低倍率 (b)高倍率(c)EDS成份分析。 60
圖4-17 scCO2鎳/石墨烯複合觸媒TEM微觀結構圖 (a)低倍率 (b)高倍率(c)EDS成份分析。 61
圖4-18 air鎳/石墨烯複合觸媒TEM微觀結構圖 (a)低倍率 (b)高倍率(c)EDS成份分析。 62
圖4-19 LiAlH4添加2.5 wt% 及10 wt% 之鐵/石墨烯複合觸媒之TPD曲線圖。 63
圖4-20 LiAlH4添加2.5 wt% 鐵粉、鐵粉/石墨烯、鐵/石墨烯複合觸媒之TPD曲線圖。 63
圖4-21 LiAlH4添加2.5 wt% TiO2、VCl3、鐵/石墨烯複合觸媒之TPD曲線圖。 64
圖4-22 LiAlH4球磨30分鐘In-situ XRD圖。 65
圖4-23 LiAlH4 + 2.5 wt% 鎳/石墨烯之In-situ XRD圖。 65
圖4-24 LiAlH4 + 2.5 wt% 鐵/石墨烯之In-situ XRD圖。 66
圖4-25 LiAlH4原材、LiAlH4球磨30分鐘、LiAlH4 + 2.5 wt% 石墨烯、LiAlH4 + 30 wt% 石墨烯、LiAlH4 + 2.5 wt% 鎳/石墨烯、LiAlH4 + 2.5 wt% 鐵/石墨烯及LiAlH4 + 10 wt% 鐵/石墨烯複合觸媒於100 oC下之恆溫放氫動力學測試。 67
圖4-26 LiAlH4球磨30分鐘、LiAlH4 + 2.5 wt% TiO2、LiAlH4 + 2.5 wt% VCl3、LiAlH4 + 2.5 wt% 鐵/石墨烯及LiAlH4 + 10 wt% 鐵/石墨烯複合觸媒於100 oC下之恆溫放氫動力學測試。 68
參考文獻 1. International Energy Agency, Key World Energy Statistics, 2012.
2. William I. F. David, “Effective hydrogen storage:a strategic chemistry challenge”, Faraday Discuss., 151 (2011) 399-414.
3. L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications”, NATURE, 414 (2001) 353-358.
4. E. Akiba, “Hydrogen-absorbing alloys”, Curr. Opin. Solid State Mater. Sci., 4 (1999) 267-272.
5. Li Zhou, “Progress and problems in hydrogen storage methods”, Renew. Sust. Energ. Rev., 9 (2005) 395-408.
6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, “Storage of hydrogen in Single-walled carbon nanotubes”, Nature, 386 (1997) 377-379.
7. Ziwei Tang, Hao Chen, Xiaowei Chen, Limin Wu, Xuebin Yu, “Graphene Oxide Based Recyclable Dehydrogenation of Ammonia Borane within a Hybrid Nanostructure”, J. Am. Chem. Soc., 134 (2012) 5464-5467.
8. A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, “LiBH4 a new hydrogen storage material”, J. Power Sources., 118 (2003) 1-7.
9. Ping Chen, Zhitao Xiong, Jizhong Luo, Jianyi Lin, Kuang Lee Tan, “Interaction of hydrogen with metal nitrides and imides”, Nature, 420 (2002) 302-304.
10. B. Bogdanovic, M. Schwickardi, “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd., 253-254 (1997) 1-9.
11. I.P. Jain, P. Jain, A. Jain, “Novel Hydrogen Storage Materials: A Review of Lightweight Complex Hydrides”, J. Alloys Compd., 503 (2010) 303-339.
12. A. Andreasena,T. Veggea, A.S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem., 178 (2005) 3672-3678.
13. D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater. Sci. Eng., B, 108 (2004) 54–59.
14. M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1413-1416.
15. Xueping Zheng, Xuanhui Qu, Islam S. Humail, Ping Li, GuoqingWang, “ Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int. J. Hydrogen Energy, 32 (2007) 1141-1144.
16. J.R. Ares Fernandez, F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim, T. Klassen, R. Bormann, “Mechanical and thermal decomposition of LiAlH4 with metal halides” , Int. J. Hydrogen Energy, 32 (2007) 1033-1040.
17. T. Sun, C.K. Huang, H. Wang, L.X. Sun, M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int. J. Hydrogen Energy, 33 (2008) 6216-6221.
18. Zheng Xueping, Liu Shenglin, “Study on hydrogen storage properties of LiAlH4”, J. Alloys Compd., 481 (2009) 761-763.
19. M. Naika, S. Rathera, C. S. Sob, S. W. Hwanga, A. R. Kimb, K. S. Nahma, “Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides”, Int. J. Hydrogen Energy, 34 (2009) 8937-8943.
20. S. Liu, L. Sun, Y. Zhang, F. Xu, J. Zhang, H. Chu, M. Fan, T. Zhang, X. Song, J. P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int. J. Hydrogen Energy, 34 (2009) 8079–8085.
21. M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, “Effects of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2361–2367.
22. Pramoch Rangsunvigit, Phunsup Purasaka, Thanyaluck Chaisuwan, Boonyarach Kitiyanan, Santi Kulprathipanja, “Effects of Carbon-based Materials and Catalysts on the Hydrogen Desorption/Absorption of LiAlH4”, Chem. Lett., 41 ( 2012) 1368-1370.
23. Zheng Xueping, Li Ping, An Fuqiang, Wang Guoqing, Qu Xuanhui, “Effects of Ti and Fe Additives on Hydrogen Release from Lithium Alanate”, Rare Metal Mat. Eng., 37 (2008) 400-403
24. X. Zheng, P. Li, X. Qu, “Effect of Additives on the Reversibility of Lithium Alanate (LiAlH4)”, Rare Met. Mater. Eng., 38 (2009) 766-769.
25. M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, “Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite”, Int. J. Hydrogen Energy, 36 (2011) 3593-3599.
26. R. A. Varin, L. Zbroniec, “The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH4)”, J. Alloys Compd., 506 (2010) 928–939.
27. R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate)”, Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
28. Robert A. Varin, Roozbeh Parviz, ”The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation”, Int. J. Hydrogen Energy, 37 (2012) 9088-9102.
29. Jennifer L. Wohlwend, Placidus B. Amama, Patrick J. Shamberger, Vikas Varshney, Ajit K. Roy, Timothy S. Fisher, “Effects of Titanium-Containing Additives on the Dehydrogenation Properties of LiAlH4: A Computational and Experimental Study”, J. Phys. Chem. C, 116 (2012) 22327-22335.
30. Zhibao Li, Shusheng Liu, Xiaoliang Si, Jian Zhang, Chengli Jiao, Shuang Wang, Shuang Liu, Yong-Jin Zou, Lixian Sun, Fen Xu, “Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6”, Int. J. Hydrogen Energy, 37 (2012) 3261-3267.
31. Fuqiang Zhai, Ping Li, Aizhi Sun, Shen Wu, Qi Wan, Weina Zhang, Yunlong Li, Liqun Cui, Xuanhui Qu, “Significantly Improved Dehydrogenation of LiAlH4 Destabilized by MnFe2O4 Nanoparticles”, J. Phys. Chem. C, 116 (2012) 11939-11945.
32. M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1417-1421.
33. M. Ismail, Y. Zhao, X.B. Yu, I. P. Nevirkovets, S.X. Dou, “Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder”, Int. J. Hydrogen Energy, 36 (2011) 8327-8334.
34. Rafi-ud-din, Qu Xuanhui, Li Ping, Lin Zhang, Mashkoor Ahmad, “Hydrogen Sorption Improvement of LiAlH4 Catalyzed by Nb2O5 and Cr2O3 Nanoparticles”, J. Phys. Chem. C, 11 (2011) 13088-13099.
35. Andrew W. Vittetoe, Michael U. Niemann, Sesha S. Srinivasan, KimberlyMcGrath, Ashok Kumar, D. Yogi Goswami, Elias K. Stefanakos, Sylvia Thomas, “Destabilization of LiAlH4 by nanocrystalline MgH2”, Int. J. Hydrogen Energy, 34 (2009) 2333-2339.
36. Shu-Sheng Liu, Zhi-Bao Li, Cheng-Li Jiao, Xiao-Liang Si, Li-Ni Yang, Jian Zhang, Huai-Ying Zhou, Feng-Lei Huang, Zelimir Gabelica, Christoph Schick, Li-Xian Sun, Fen Xu, “Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2”, Int. J. Hydrogen Energy, 38 (2013) 2770-2777.
37. L. H. Kumar, B. Viswanathan, S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres”, Int. J. Hydrogen Energy, 33 (2008) 366-373.
38. M. Sterlin Leo Hudson, Himanshu Raghubanshi, D. Pukazhselvan, O.N. Srivastava, “Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2083-2090.
39. Joseph A. Teprovich Jr., Douglas A. Knight, Matthew S. Wellons, Ragaiy Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4”, J. Alloys Compd., 509 (2011) 562-566.
40. Rafi-ud-din, Lin Zhang, Li Ping, Qu Xuanhui, “Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4”, J. Alloys Compd., 508 (2010) 119-128.
41. Jorge Íñiguez, T. Yildirim, T. J. Udovic, M. Sulic, and C. M. Jensen, “Structure and hydrogen dynamics of pure and Ti-doped sodium alanate”, Phys. Rev. B., 70 (2004) 060101.
42. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4”, Nano Lett., 9 (4) (2011) 1501-1505.
43. Allen, M.J., V.C. Tung, R.B. Kaner, “Honeycomb Carbon: A Review of Graphene” Chem. Rev., 110 (2009) 132-145.
44. A. K. Geim, K. S. Novoselov, “The rise of grapheme”, Nature materials. 6 (2007) 183-191.
45. Juan Xu, Rongrong Meng, Jianyu Cao, Xiaofang Gu, Zhongqing Qi, Wenchang Wang, Zhidong Chen, “Enhanced dehydrogenation and rehydrogenation properties of LiBH4 catalyzed by grapheme”, Int. J. Hydrogen Energy, 38 (2013) 2796-2803.
46. Yu XB, Wu Z, Chen QR, Li ZL, Weng BC, Huang TS., “Improved hydrogen storage properties of LiBH4 destabilized by carbon” , Appl Phys Lett,. 90 (2007) 034106.
47. Zhang Y, Zhang WS, Wang AQ, Sun LX, Fan MQ, Chu HL, “LiBH4 nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms”, Int. J. Hydrogen Energy, 32 (2007) 3976-3980.
48. Philipp Adelhel, Petra E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides”, J. Mater. Chem., 21 (2011) 2417-2427.
49. R. Arrigo, PhD thesis, “Nitrogen Functionalization of CNFs and Application in Heterogeneous Catalysis”, Technical University Berlin, Berlin, (2009) 1-184
50. Alexander A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”, Nature materials. 10 (2011) 569-581.
51. Juan Xu, Rongrong Meng, Jianyu Cao, Xiaofang Gu, Wei-Li Song, Zhongqing Qi,Wenchang Wang, Zhidong Chen, “Graphene-supported Pd catalysts for reversible hydrogen storage in LiBH4”, J. Alloys Compd., 564 (2013) 84-90.
52. Meganne Christian, Kondo-Francois Aguey-Zinsou, “Destabilisation of complex hydrides through size effects”, Nanoscale, 2 (2010) 2587-2590.
53. Juan Xu, Xuebin Yu, Zhiqing Zou, Zhilin Li, Zhu Wu, Daniel L. Akins, Hui Yang, “Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles”, Chem. Commun., (2008) 5740-5742.
54. W. Leitner, “Green chemistry: Designed to dissolve”, Nature, 405 (2000) 129-130.
55. E. J. Beckman, “Supercritical and near-critical CO2 in green chemical synthesis and processing”, J. Supercrit. Fluids, 28 (2004) 121-191.
56. J. M. DeSimone, “Practical Approaches to Green Solvents”, Science, 297 (2002) 799-803.
57. J.B. Rubin, L.B. Davenhall, C.M.V. Taylor, L.D. Sivils, T. Pierce, “CO2-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents”.
58. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldie, M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles”, J. Mater. Chem., 17 (2007) 2679-2694.
59. Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, “Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell”, J. Phys. Chem. B, 108 (2004) 8234-8240.
60. C. T. Hsieh, J. Y. Lin, J. L. Wei, “Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes”, Int. J. Hydrogen Energy, 34 (2009) 685-693.
61. Ying Zhang, Can Erkey, “Preparation of supported metallic nanoparticles using supercritical fluids: A review”, J. Supercrit. Fluids, 38 (2006) 252-267.
62. Chih-Yao Chen, Kuan-Yu Lin, Wen-Ta Tsai, Jeng-Kuei Chang, Chuan-Ming Tseng, “Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite”, Int. J. Hydrogen Energy, 35 (2010) 5490-5497.
63. Chih-Yao Chen, Jeng-Kuei Chang, Wen-Ta Tsai and Chun-Hung Hung, “Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover” J. Mater. Chem., 21 (2011) 19063-19068.
64. Pin-Ju Tsai, Cheng-Hsien Yang, Wei-Che Hsu, Wen-Ta Tsai, Jeng-Kuei Chang, “Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid”, Int. J. Hydrogen Energy, 37 (2012) 6714-6720.
65. Wu Tianbin, Zhang Peng, Ma Jun, Fan Honglei, Wang Weitao, JiangTao, Han Buxing, “Catalytic activity of immobilized Ru nanoparticles in a porous metal‐organic framework using supercritical fluid”, Chinese Journal of Catalysis, 34 (2013) 167-175.
66. Raja S. Chellappa, Dhanesh Chandra, Stephen A. Gramsch, Russell J. Hemley, Jung-Fu Lin and Yang Song, “Pressure-Induced Phase Transformations in LiAlH4”, J. Phys. Chem. B, 110 (2006) 11088-11097.
指導教授 李勝隆、張仍奎
(Sheng-Long Lee、Jeng-Kuei Chang)
審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明