博碩士論文 100328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.128.201.207
姓名 葉崇宇(Yeh, Chung-Yu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用聲子波茲曼方程式模擬非均質奈米多孔材料之熱傳性質
相關論文
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 常壓下熱電材料特性量測方法之模擬與分析
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 微致冷器之致冷特性數值模擬分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 多孔矽製備與熱傳特性量測之研究★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 薄膜陣列結構微致冷器致冷特性數值模擬
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在微觀尺度下,當系統的特徵尺寸與熱載子的平均自由路徑相近或小於時,熱的傳輸不是擴散傳輸而是彈道傳輸,使用巨觀傅立葉定律分析會高估其熱傳導係數,這時需使用聲子的輻射傳輸方程式來描述微尺度下的熱傳現象。
本文利用聲子波茲曼方程式(Boltzmann transport equation,BTE)來模擬奈米尺度非均質多孔矽薄膜之熱傳性質,內容探討不同孔隙率、孔洞大小、非均質孔洞排列方式與薄膜厚度對熱傳導係數的影響。數值模擬使用COMSOL Multiphysics多重物理量耦合模擬軟體。利用有限元素法並結合分離座標法(discrete ordinate method,DOM)求解波茲曼傳輸方程式。模擬結果發現,在高孔隙率與小孔徑孔洞下,表面積與體積比(surface to volume ratio)高,增加聲子與孔洞界面散射的比例能有效降地熱傳導係數。薄膜在相同厚度與孔洞數時,總溫降是相同的,但薄膜內孔徑的大小與擺放位置會影響其中的溫度分佈,不同孔徑孔洞的排列順序會改變熱通量大小與限制其傳輸路徑而造成熱傳導係數的改變,本文透由計算不同孔徑孔洞間的界面熱阻並利用熱組串聯方式來預測其熱阻值。
摘要(英) As the characteristic length of a system become comparable to or smaller than the mean free path of heat carriers, the energy transport behaviors become ballistic rather than diffusive. In this case, it will overestimate the thermal conductivity of the matter by using Fourier law. The phonon radiative transfer equation can be a better way to describe the microscale heat transfer.
In this study, the thermal property of inhomogeneous porous thin films are considered. The effects of porosity, pore size, thickness of the thin film, and inhomogeneous arrangements on the thermal conductivity are discussed by Boltzmann transport equation (BTE).We use the COMSOL Multiphysics software as the numerical tool to solve the BTE combined with angular discretization by the discrete ordinate method. The results shows that at high porosity and small pore size, increasing the phonon-pore’s interface scatterings can effectively decrease the thermal conductivity due to the high surface-to-volume ratio. In the case of the same film thickness and same pore number, the total temperature drops of diffenrent samples are the same, however, the temperature distribution are different for different the pore arrangements. The higher temperature gradient happens at the vicinities of the smaller pores. It is the reason for the changes of apparent thermal conductivity. The equivalent themal resistance model is also used to interpret the thermal resistance change at different inhomogeneous cases.
關鍵字(中) ★ 波茲曼方程式
★ 奈米多孔材料
★ 熱傳導係數
關鍵字(英) ★ Boltzmann transport equation
★ Nanoporous materials
★ Thermal conductivity
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 ix
符號對照表 xi
第一章 緒論1
1-1 引言 1
1-2 聲子 1
1-3 微觀熱傳導 2
1-4 文獻回顧與研究動機 6
1-5 研究內容 9
第二章 聲子傳輸理論 11
2-1 波茲曼傳輸方程式 11
2-2 聲子輻射熱傳方程式(EPRT) 12
2-3 一維薄膜熱傳分析 15
2-4 二維薄膜熱傳分析 16
2-5 邊界條件 17
2-6 二維多孔薄膜熱傳分析 20
2-7 等效介質模型(Effective Medium Model) 21
第三章 數值方法 23
3-1 有限元素分析法 23
3-1-1 邊界值問題 23
3-1-2 有限元素法 24
3-1-3 葛樂金法 26
3-1-4 COMSOL Multiphysics 27
3-1-5 統御方程式與邊界條件 27
3-2 離散座標法 29
3-2-1 方向角離散 29
3-2-2 射線效應(Ray effect) 34
3-3 網格測詴 39
3-4 模擬參數 40
3-4-1 灰質模型(Gray Model ) 40
3-4-2 材料參數 41
3-4-3 非均質孔洞設計 42
3-4-4 數值求解流程圖 44
第四章 結果與討論 45
4-1 一維薄膜等溫邊界聲子傳輸 45
4-2 二維薄膜等溫邊界聲子傳輸 46
4-2-1 一維與二維之對稱邊界模型比較 46
4-2-2 二維薄膜反射邊界模型 47
4-3 均值(homogeneous)孔洞薄膜 50
4-3-1 薄膜厚度與熱傳導係數 50
4-3-2 孔隙率與熱傳導係數 53
4-3-3 孔徑大小與熱傳導係數 53
4-4 非均質孔洞薄膜 56
4-4-1 非均質孔洞模型建立 56
4-4-2 孔洞串聯分析 59
4-4-3 孔洞排列順序與熱阻 63
4-4-4 界面熱阻與等效串聯熱組模型 73
4-4-5 非均質孔洞串聯與並聯模型 83
第五章 結論與未來展望 90
參考文獻 92
參考文獻 [1] C. Kittel , "Introduction to Solid State Physics",Wiley, New York, "1986
[2] Sihn, Sangwook , Ajit K. Roy. "Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation." COMSOL Conference, Boston, 2009.
[3] A. Majumdar ,“Microscale heat conduction in dielectric thin films,” ASME Journal of Heat Transfer, Vol. 115, pp. 7-16, 1993.
[4] A. A. Joshi , A. Majumdar,“Transient ballistic and diffusive phonon heat transport in thin films,” Journal of Applied Physics, Vol. 74, pp. 31-39,1993.
[5] C. L. Tien , G. Chen, , “Challenges in Microscale Conductive and Radiative Heat Transfer,” ASME Journal of Heat Transfer, Vol. 116, pp. 799-807, 1994.
[6] G. Chen , M. Neagu, “Thermal Conductivity and Heat Transfer in Superlattices,” Applied Physical Letters, Vol. 71, pp.2761-2763, 1997.
[7] D. Song , G. Chen, “Thermal Conductivity of Periodic Microporous Silicon Films,” Applied Physical Letters, Vol. 84, pp. 687-689, 2004.
[8] R. Yang , G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Phys. Rev. B 69 195316,2004.
[9] J.-K. Yu , S.Mitrovic , D.Tham , J.Varghese , J.R.Heath : Reduction of thermal conductivity in phononic nanomesh structures.Nat. Nanotechnol. 5, 718 ,2010.
[10] J.-H. Lee , G.A.Galli , J.C.Grossman : Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8, 3750 ,2008.
[11] J. Lee , J.Grossman , J.Reed : Lattice thermal conductivity of nanoporous Si: Molecular dynamics study. Appl. Phys. Lett. 91,223110 ,2007.
[12] Y. He , D. Donadio , J.-H.Lee , J.C. Grossman , G.Galli : Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5, 1839 ,2011.
[13] J.Tang , H. Wang , Lee, D. H., Fardy, M., Huo, Z., Russell, T. P., & Yang, P. : Holey silicon as an efficient thermoelectric material. Nano letters, 10(10), pp.4279-4283, 2010.
[14] R. H. Tarkhanyan , and D. G. Niarchos. "Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity." International Journal of Thermal Sciences 67: pp.107-112, 2013.
[15] J. Randrianalisoa, D. Baillis, Adv. Eng. Mater. 11 852 e861, 2009.
[16] A. Majumdar, ”Monte Carlo study of phonon transport in solid thin films including dispersion and polarization,” ASME Journal of Heat Transfer, Vol. 123, pp. 749-759, 2001
[17] J. Y. Murthy , S. R. Mathur, “Computation of sub-micron thermal transport using an unstructured finite
volumemethod,” ASME Journal of Heat Transfer, Vol. 124, pp. 1176-1181, 2002.
[18] N. S. Dhillon , "BOLTZMANN SOLVER FOR PHONON TRANSPORT."
[19] G. Chen , "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices." Physical Review B 57.23 ,1998.
[20] Nabovati, Aydin, Daniel P. Sellan, and Cristina H. Amon. "On the lattice Boltzmann method for phonon transport." Journal of Computational Physics 230.15 ,pp.5864-5876,2011.
[21] 徐仁杰. "使用聲子波茲曼方程對緊密型奈米尺度複合物之熱傳模擬." 臺灣大學應用力學研究所學位論文pp.1-76., 2008.
[22] D. Song , G. Chen : Thermal conductivity of periodic microporoussilicon films. Appl. Phys. Lett.84(5), 687 ,2004.
[23] J. M. Ziman:Electrons and PhononsOxford University Press, Oxford,1960.
[24] L. Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium.Philosophical Magazine 34 481 ,1892.
[25] J. Maxwell , A Treatise on Electricity and Magnetism. Oxford University Press,1904.
[26] D.P. Hasselman, L.F. Johnson, Effective thermal conductivity of compositeswith interfacial thermal contact resistance. Journal of Composite Materials 21 pp.508 -515,1987.
[27] 皮托科技,電腦輔助分析模擬軟體學習寶典COMSOL Multiphysics,2013.
[28] COMSOL Multiphysics, User’s Guide, ver. 3.5a , COMSOL AB, 2008.
[29] Singh, Dhruv, Jayathi Y. Murthy, and Timothy S. Fisher. "Effect of phonon dispersion on thermal conduction across Si/Ge interfaces." arXiv preprint arXiv:1005.2578 2010.
[30] Murthy, Y. Jayathi, et al. "Review of multi-scale simulation in sub-micron heat transfer." Int. J. for Multiscale Computational Engineering 3 pp.5-32 ,2005.
[31] Rey, Guillem Colomer. Numerical methods for radiative heat transfer. Universitat Politècnica de Catalunya, 2007.
[32] Mittal, Arpit. Prediction of Non-Equilibrium Heat Conduction in Crystalline Materials Using the Boltzmann Transport Equation for Phonons. Diss. The Ohio State University, 2011.
[33] M. A. Heaslet , R. F. Warming, "Radiative transport and wall temperature slip in an absorbing planar medium," International Journal of Heat and Mass Transfer, vol. 8, pp. 979-994,1965.
[34] G. Chen, "Size and Interface Effects on Thermal Conductivity of Periodic Thin Film Structures," presented at 1996 National Heat Transfer Conference, Houston, August 3-5, ASME HTD-Vol. 323, pp.121-130, 1996.
[35]A.Christensen ,"Multiscale Modeling of Thermal Transport in Gallium NitrideMicroelectronics," Mechanical Engineering Dissertation, Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2009.
[36] M. I. Flik and C. L. Tien, "Size Effect on the Thermal Conductivity of High-Tc Thin-Film Superconductors," J. Heat Transfer, vol. 112, pp. 872-881, November 1990.
指導教授 洪銘聰(Hung, Ming-Tsung) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明