博碩士論文 100328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.147.27.130
姓名 吳佩蓉(Pei-Jung Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
(Study on corrosion properties of the metal foam in PEM fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究在金屬多孔材表面鍍上不同鍍層,分析鍍層的表面形貌、接觸角、接觸阻抗與抗腐蝕能力,更進一步組裝成單電池,進行電池性能測試、EIS測試與長時間穩定性測試,以了解不同表面處理的腐蝕特性對金屬多孔材燃料電池性能之影響。
  氮化鈦鍍層在腐蝕前後表面形貌沒有明顯改變;接觸角結果顯示,PTFE疏水處理可增加表面的疏水特性,經處理後所有樣本的接觸角皆可提升至120 o以上,腐蝕測試後以氮化鈦鍍層的接觸角變動最小,具最佳的疏水特性;銀鍍層的表面形貌較平坦,因此接觸阻抗最小,其次為氮化物鍍層、碳鍍層最差;在腐蝕極化測試中以氮化物鍍層表現最佳,於PH=3、80 oC硫酸環境中之腐蝕電流密度為9.33x10-7 A/cm2,符合DOE目標,由鍍層表面特性均顯示氮化鈦鍍層具極佳的抗腐蝕能力。
  氮化鈦鍍層單電池亦有優異的表現,在電池操作溫度60 oC下有1199 mA/cm2之電流密度輸出,且在長時間測試中穩定輸出27.5 A,為反映氮化鈦鍍層於抗蝕性與疏水性之優勢,在現今貴金屬飆漲的趨勢中,是相當具有應用潛力之表面處理方法。
摘要(英) In this study, TiN, Ag and C were coated on the metal foam. SEM, contact angle, interfacial contact resistancen and electrochemical methods were used to characterize the corrosion properties of the different coatings. Furthermore, these surface treated metal foams were used in single PEMFC. I-V curves, long-term cell performance and EIS were measured to investigate the effects of corrosion properties of metal foams on the performance of single PEM fuel cell.
  Results from the contact angle measurement showed that PTFE treatment increased the hydrophobicity of metal foams. All PTFE-treated samples had a contact angle larger than 120  and TiN coating had the best hydrophobicity. Poteniodynamic test measured in PH=3 H2SO4 solution showed that the TiN-coated sample had the best corrosion resistance. The corrosion current density of TiN at 80 oC was 9.33x10-7 A/cm2, which meets the DOE target for metallic bipolar plate.
  For cell operated at temperature of 60 C and atmospheric pressure, the current density at 0.6 V for the cell with TiN-coated metal foams reached 1199 mA/cm2. Long term stability test also showed that the cell could maintain stable current output in 100 hours. These results demonstrate that TiN is a promising surface coating of metal foam for low temperature PEMFC use.
關鍵字(中) ★ 燃料電池
★ 金屬多孔材
★ 表面處理
★ 腐蝕極化測試
★ EIS
關鍵字(英) ★ Fuel cell
★ Metal foam
★ Coating
★ Corrosion
★ EIS
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
符號說明 xvi
第一章 緒論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-2-1 液態電解質燃料電池 2
1-2-2 固態電解質燃料電池 4
1-3 質子交換膜燃料電池 5
1-3-1 質子交換膜燃料電池之構造與工作原理 5
1-3-2 質子交換膜燃料電池之極化現象 8
1-4 研究動機與目的 9
第二章 文獻回顧 11
2-1 金屬雙極板抗腐蝕 11
2-1-1 貴金屬鍍層 11
2-1-2 氮化物鍍層 14
2-1-3 其他鍍層 16
2-2 金屬多孔材應用於燃料電池 17
2-3 電化學交流阻抗頻譜分析 19
第三章 實驗分析原理 22
3-1 腐蝕電化學原理 22
3-1-1 混合電位理論 22
3-1-2 極化曲線 23
3-2 電化學交流阻抗頻譜原理 24
3-2-1 燃料電池測試原理 24
3-2-2 燃料電池等效電路模型 25
第四章 實驗方法與實驗設備 27
4-1 實驗架構 27
4-2 鍍層製備與規格 27
4-3 接觸阻抗量測 28
4-4 接觸角量測 29
4-5 腐蝕極化量測與EIS量測 30
4-6 燃料電池規格 31
4-7 燃料電池測試條件 32
4-7-1 電池性能與長時間穩定性測試 33
4-7-2 燃料電池測試機台 34
第五章 實驗結果與討論 36
5-1 表面形貌分析 36
5-2 接觸角量測結果 38
5-3 接觸阻抗量測結果 41
5-4 腐蝕極化測試結果 44
5-5 單電池性能分析 50
5-5-1 不同鍍層表面處理對電池性能之影響 50
5-5-2 不同操作條件對不同鍍層單電池性能之影響 52
5-6 交流阻抗頻譜分析 56
5-6-1 不同鍍層表面處理對電池性能之影響 56
5-6-2 不同操作條件對不同鍍層單電池性能之影響 59
5-7 電池性能長時間穩定性分析 62
第六章 結論與未來方向 66
參考文獻 69
參考文獻 參考文獻
[1] BP Statistical Review of World Energy, 2011, formhttp://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf.
[2] 陳維新,能源概論,高立圖書有限公司,台北縣,民國97年。
[3] A. Hermann, T. Chaudhuri, P. Spagnol, “Bipolar plates forPEMfuel cells:Areview,”International Journal of Hydrogen Energy, Vol. 30, pp. 1297-1302, 2005.
[4] H. Tawfik, Y. Hung, D. Mahajan, “Metal bipolar plates for PEM fuel cell—A review,”Journal of Power Soruces, Vol. 163, pp. 755-767, 2007.
[5] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,”International Journal of Hydrogen Energy, Vol. 35, pp. 3632-3647, 2010.
[6] 黃鎮江,燃料電池(第三版),滄海書局,台中市,民國97年。
[7] R. O’Hyre, S.W. Cha, W. Colella, F.B.Prinz,王曉紅、黃宏譯,燃料電池基礎,全華圖書股份有限公司,台北縣,民國97年。
[8] X.Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical ImpedanceSpectroscopy inPEM Fuel Cells-Fundamentals and Applications,Springer, 2010.
[9] X. Yuan, H. Wang, J.C. Sun, J. Zhang, “AC impedance technique in PEM fuel cell diagnosis—A review,”International Journal of Hydrogen Energy, Vol. 32, pp. 4365-4380, 2007.
[10] V. Mehta, J.S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,”Journal of Power Sources, Vol. 114, pp. 32-53, 2003.
[11] J. Wind, R. Späh, W. Kaiser, G. Böhm, “Metallic bipolar plates for PEM fuel cells,”Journal of Power Sources, Vol. 105, pp. 256-260, 2002.
[12] S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, “Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells,”Journal of Power Sources, Vol. 162, pp. 486-491, 2006.
[13] Y. Fu, M. Hou, H. Xu, Z. Hou, P. Ming, Z. Shao, B. Yi,“Ag-polytetrafluoroethylene composite coating on stainless steel as bipolarplate of proton exchange membrane fuel cell,”Journal of Power Sources, Vol. 182, pp. 580-584, 2008.
[14] W. Yoon, X. Huang, P. Fazzino, K.L. Reifsnider,M.A. Akkaoui, “Evaluation of coated metallic bipolar plates for polymer electrolytemembrane fuel cells,”Journal of Power Sources, Vol. 179, pp. 265-273, 2008.
[15] Y.H. Yun, “Deposition of gold–titanium and gold–nickel coatingson electropolished 316L stainless steel bipolar platesfor proton exchange membrane fuel cells,”International Journal of Hydrogen Energy, Vol. 35, pp. 1713-1718, 2010.
[16] K. Feng, Z. Li, X. Cai, P.K. Chu, “Silver implanted 316L stainless steel as bipolar plates in polymer electrolytemembrane fuel cells,”Materials Chemistry and Physics, Vol. 126, pp. 6-11, 2011.
[17] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type316 stainless steel in simulatedPEMFC environments,”Corrosion Science, Vol. 46, pp. 1369-1380, 2004.
[18] Y. Wang, D.O. Northwood, “An investigation into TiN-coated 316L stainless steelas a bipolar plate material for PEM fuel cells,”Journal of Power Sources, Vol. 165, pp. 293-298, 2007.
[19] D. Zhang, L. Duan, L. Guo, W.H. Tuan, “Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell,”International Journal of Hydrogen Energy, Vol. 35, pp. 3721-3726, 2010.
[20] E. Dur, Ö.N. Cora, M. Kocç, “Experimental investigations on the corrosion resistancecharacteristics of coated metallic bipolar plates for PEMFC,”International Journalof Hydrogen Energy, Vol. 36, pp. 7162-7173, 2011.
[21] J. Barranco, F. Barreras, A. Lozano, M. Maza, “Influence of CrN-coating thickness on the corrosion resistance behaviour ofaluminium-based bipolar plates,”Journal of Power Sources, Vol. 196, pp. 4283-4289, 2011.
[22] S. Joseph, J.C. McClure, P.J. Sebastian, J. Moreira, E. Valenzuela, “Polyaniline and polypyrrole coatings on aluminum forPEM fuel cell bipolar plates,”Journal of Power Sources, Vol. 177, pp. 161-166, 2008.
[23] W.L. Wang,S.M. He, C.H. Lan, “Protective graphite coating on metallic bipolar plates for PEMFC applications,”Electrochimica Acta, Vol. 62, pp. 30-35, 2012.
[24] A. Kumar, R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,”Journal of Power Sources, Vol. 114, pp. 54-62, 2003.
[25] A. Kumar, R.G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,”Journal of Power Sources, Vol. 129, pp. 62-67, 2004.
[26] S. Arisetty, A.K. Prasad, S.G. Advani, “Metal foams as flow field and gas diffusion layer indirect methanol fuel cells,”Journal of Power Sources, Vol. 165, pp. 49-57, 2007.
[27] J. Kim, N.Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell,”Journal of Power Soruces, Vol. 195, pp. 2291-2300, 2010.
[28] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wanga, C.I. Lee, C.C. Yang, S.K. Lo, “Effects of flow field design on the performance of a PEM fuelcell with metal foam as the flow distributor,”International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012.
[29] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang, S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,”Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[30] N. Wagner, “Characterization of membrane electrode assemblies in polymer electrolyte fuel cellsusing a.c. impedance spectroscopy,”Journal of Applied Electrochemistry, Vol. 32, pp. 859-863, 2002.
[31] T. Abe, H. Shima, K. Watanabe, Y. Ito, “Study of PEFCs by AC Impedance, Current Interrupt,and Dew Point MeasurementsI. Effect of Humidity in Oxygen Gas,”Journal of The Electrochemical Society, Vol. 151, pp. A101-A105, 2004.
[32] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stackPart I: Stack impedance,”Journal of Power Sources, Vol. 161, pp. 920-928, 2006.
[33] X. Yuan, J.C. Sun, H. Wang, J. Zhang, “AC impedance diagnosis of a 500W PEM fuel cell stackPart II: Individual cell impedance,”Journal of Power Sources, Vol. 161, pp. 929-937, 2006.
[34] J.M.L. Canut, R.M. Abouatallah, D.A. Harrington, “Detection of Membrane Drying, Fuel Cell Flooding, and AnodeCatalyst Poisoning on PEMFC Stacks by ElectrochemicalImpedance Spectroscopy,”Journal of The Electrochemical Society, Vol. 153, pp. A857-A864, 2006.
[35] A. Hakenjos, M. Zobel, J. Clausnitzer, C. Hebling, “Simultaneous electrochemical impedance spectroscopy ofsingle cells in a PEM fuel cell stack,”Journal of Power Sources, Vol. 154, pp. 360-363, 2006.
[36] W.H. Zhu, R.U. Payne, B.J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance,”Journal of Power Sources, Vol. 168, pp. 211-217, 2007.
[37] 曹楚南,腐蝕電化學原理,北京化學工業出版社,北京,民國93年。
[38] 柯賢文,腐蝕及其防治,全華書局出版,台北,民國87年。
[39] 鮮祺振,腐蝕理論與實驗,徐氏基金會出版社,台北市,民國89年。
[40] D.A. Jones, Principles And Prevention Of Corrosion 2nd ed., Prentice Hill, 1996.
[41] S.H. Lee, T.H. Yang, S.H. Hyun, Y.S. Yoon, “Corrosion behavior of pre-oxidized and thermally nitrided stainless steelfor polymer electrolyte membrane fuel cell bipolar plates,”Corrosion Science, Vol. 50, pp. 79-85, 2012.
[42] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer,E.R. Gonzalez, “Modelistic interpretation of the impedanceresponse of a polymer electrolyte fuel cell,”ElectrochemicaActa, Vol. 43, pp. 3761-3766, 1998.
[43] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kWPEM fuel cell stack under differentoperating conditions and load changes,”International Journal of Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[44] T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld, “Characterization of Polymer Electrolyte Fuel Cells Using ACImpedance Spectroscopy,”Journal of The Electrochemical Society, Vol. 143, pp. 587-599, 1996.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明