博碩士論文 100523015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.191.98.152
姓名 洪培文(Pei-wen Hung)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 以最大概似法之智慧型中繼策略用於多輸入輸出中繼站網路
(ML-based Intelligent Relaying Strategy for MIMO Relay Networks)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現有的無線通訊系統中,使用中繼站 (Relay) 以增加
傳輸的效能和訊號傳輸範圍已是未來的趨勢,在現有的中繼站傳輸策略中,較常見的有放大後傳輸 (Amplify-and-Forward,AF),即在中繼站將接收訊號放大後傳輸,與解調後傳輸 (Decode-and-Forward,DF),即在中繼站將接收訊號做解調之後再放大傳輸。但兩種策略有各自的優缺點,AF 對通道增益的影響較敏感,而 DF 需要在中繼站接收到可靠的訊號。本篇提出以最大概似比 (MaximumLikelihood,ML) 為偵測訊號的 MIMO 模型,在兩種傳輸策略中做決策,選擇要用何種方式傳輸,分析 BPSK、QPSK、16QAM 三種調變方式的錯誤率後,利用切爾諾夫邊界 (Chernoff bound) 取上界算出平均錯誤率 (Average Error Probability),以簡易的判斷式做決策。一方面降低回傳通道資訊 (Channel State Information,CSI) 的即時性,一方面提出將既有傳輸方式最佳化的策略。
摘要(英) Using relays to improve the performance and extend cover-
age area is the future trend in modern wireless transmission systems.Amplify-and-Forward (AF) and Decode-and-Forward (DF) are the most popular strategies discussed for relay transmission. AF and DF have their specific disadvantages, e.g. AF is sensitive to channel gains while DF requires reliable received signals. This thesis proposes to make decision between two transmission strategies for relay based on the ML-based MIMO transmission model. To find an intelligent strategy, we analyze three modulation types, including BPSK, QPSK and 16-QAM, and make
decision rely on the average error probability obtained by the Chernoff
bound. The proposed decision strategy does not need the Channel State Information(CSI) in time for reaching optimum performance.
關鍵字(中) ★ 中繼網路
★ 放大並傳輸策略
★ 解碼並傳輸策略
★ 合作式通訊
關鍵字(英) ★ relay network
★ Amplify-and-forward strategy
★ Decode-and-forward strategy
★ Cooperative communication
論文目次 中文摘要.....................................i
英文摘要.....................................iii
目錄.....................................i
圖目錄.....................................iii
表目錄 .....................................iv
第 1 章序論.....................................1
1.1 前言.....................................1
1.2 章節架構.....................................4
第 2 章Relay 用於 MIMO 傳輸系統架構.....................................5
2.1 系統架構.....................................5
2.2 Relay 端傳輸策略 1:AF.....................................8
2.3 Relay 端傳輸策略 2:DF.....................................10
2.4 小結.....................................12
第 3 章Relay 端使用策略之決策法.....................................14
3.1 Amplify-and-Forward(AF) 錯誤率.....................................14
3.1.1 AF 在 BPSK 調變之位元錯誤率.....................................14
3.1.2 AF 在 QPSK 調變之符元錯誤率.....................................15
3.1.3 AF 在 16-QAM 調變之符元錯誤率.....................................16
3.2 Decode-and-Forward(DF) 錯誤率.....................................17
3.2.1 DF 在 BPSK 調變之位元錯誤率.....................................17
3.2.2 DF 在 QPSK 調變之符元錯誤率.....................................19
3.2.3 DF 在 16-QAM 調變之符元錯誤率.....................................20
3.3 上界逼近值 (upper bound) 與機率分布介紹.....................................21
3.3.1 平均錯誤率.....................................21
3.3.2 上界逼近值-切爾諾夫邊界 (Chernoff bound).....................................22
3.3.3 機率分布變化.....................................24
3.4 平均錯誤率計算.....................................27
3.4.1 AF 在 BPSK 調變之平均位元錯誤率上界.....................................27
3.4.2 AF 在 QPSK 調變之平均符元錯誤率上界.....................................28
3.4.3 AF 在 16-QAM 調變之平均符元錯誤率上界.....................................29
3.4.4 DF 在 BPSK 調變之平均位元錯誤率上界.....................................29
3.4.5 DF 在 QPSK 調變之平均符元錯誤率上界.....................................31
3.4.6 DF 在 16-QAM 調變之平均符元錯誤率上界.....................................32
3.5 考慮直線通道的錯誤率計算.....................................34
3.5.1 考慮直線通道之 AF 和 DF 錯誤率.....................................34
3.5.2 考慮直線通道之 AF 和 DF 平均錯誤率.....................................36
3.6 使用平均錯誤率決策 (Desicion).....................................39
第 4 章系統模擬與結果分析.....................................40
4.1 系統模擬參數.....................................41
4.2 BPSK 之位元錯誤率模擬.....................................41
4.2.1 通道增益比較.....................................42
4.2.2 放大係數比較.....................................47
4.2.3 exact value 與 upper bound 的平均錯誤率比較.....................................49
4.2.4 使用迴旋編碼 (Convolutional code) 傳輸.....................................51
4.2.5 合作式傳輸.....................................54
4.3 QPSK 之符元錯誤率模擬.....................................58
4.4 16-QAM 之符元錯誤率模擬.....................................62
第 5 章結論.....................................65
參考文獻 .....................................66
參考文獻 [1] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex fading relay channels,”IEEE Journal on Selected Areas inCommunications, vol. 25, no. 2, pp. 379–389, 2007.
[2] W. Su and X. Liu, “On optimum selection relaying protocols in cooperative wireless networks,”IEEE Transactions on Communications, vol. 58, no. 1, pp. 52–57, 2010.
[3] Y. Liu, P. Dharmawansa, M. McKay, and K. Letaief, “Finite-snr diversity-multiplexing trade-off of dual hop multiple-relay channels,”IEEE Transactions on Communications, vol. 60, no. 5, pp.
1451–1463, 2012.
[4] X. Jin, J.-S. No, and D.-J. Shin, “Source transmit antenna selection for mimo decode-and-forward relay networks,”IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1657–1662, 2013.
[5] P. Ubaidulla and A. Chockalingam, “Relay precoder optimization in mimo-relay networks with imperfect csi,”IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5473–5484, 2011.
[6] S. Zhang, S. chang Liew, and P. P. Lam, “Physical-layer network coding,”in in ACM Mobicom ‘06, 2006.
[7] M. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for bidirectional relaying,”IEEE Transactions on Information Theory, vol. 56, no. 11, pp.5641–5654, 2010.
[8] G. Li, Y. Wang, and P. Zhang, “Linear mmse processing design for 3-phase two-way cooperative mimo relay systems,”IEEE Signal Processing Letters, vol. 19, no. 7, pp. 443–446, 2012.
[9] R. Wang and M. Tao, “Joint source and relay precoding designs for mimo two-way relaying based on mse criterion,”IEEE Transactions on Signal Processing, vol. 60, no. 3, pp. 1352–1365, 2012.
[10] E. Chiu and V. Lau, “Cellular multiuser two-way mimo af relaying via signal space alignment: Minimum weighted sinr maximization,”IEEE Transactions on Signal Processing, vol. 60, no. 9, pp.4864–4873, 2012.
[11] Q. Liu, W. Zhang, X. Ma, and G. Zhou, “Designing peak power constrained amplify-and-forward relay networks with cooperative diversity,”IEEE Transactions on Wireless Communications, vol. 11,no. 5, pp. 1733–1743, 2012.
[12] S. Soliman and N. Beaulieu, “Exact analysis of dual-hop af maximum end-to-end snr relay selection,”IEEE Transactions on Communications,, vol. 60, no. 8, pp. 2135–2145, 2012.
[13] J.-B. Kim and D. Kim, “Performance of dual-hop amplify-and-forward beamforming and its equivalent systems in rayleigh fading channels,”IEEE Transactions on Communications, vol. 58, no. 3, pp. 729–732, 2010.
[14] G. Choi, W. Zhang, and X. Ma, “Achieving joint diversity in decode-and-forward mimo relay networks with zero-forcing equalizers,”IEEE Transactions on Communications,, vol. 60, no. 6, pp.1545–1554, 2012.
[15] G. V. V. Sharma, V. Ganwani, U. Desai, and S. Merchant, “Performance analysis of maximum likelihood detection for decode and forward mimo relay channels in rayleigh fading,”IEEE Transactions on Wireless Communications, vol. 9, no. 9, pp. 2880–2889, 2010.
[16] C. De and S. Kundu, “Hybrid forwarding for serial and parallel wireless relaying in m-nakagami fading channel,”in 2011 2nd International Conference on Computer and Communication Technology(ICCCT),, 2011, pp. 601–606.
[17] E. Chiu, V. Lau, S. Zhang, and B. Mok, “Precoder design for multi-antenna partial decode-and-forward (pdf) cooperative systems with statistical csit and mmse-sic receivers,”IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1343–1349, 2012.
[18] M. Hasna and M.-S. Alouini, “End-to-end performance of transmission systems with relays over rayleigh-fading channels,”Wireless Communications, IEEE Transactions on, vol. 2, no. 6, pp. 1126–1131, 2003.
[19] M. Khandaker and Y. Rong, “Interference mimo relay channel: Joint power control and transceiver-relay beamforming,”IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6509–6518,2012.
[20] P. Clarke and R. De Lamare, “Transmit diversity and relay selection algorithms for multirelay cooperative mimo systems,”IEEE Transactions on Vehicular Technology,, vol. 61, no. 3, pp. 1084–1098,2012.
[21] J.G.Proakis, Digital Communications, 4th edition, Ed. McGraw-Hill, 2001.
[22] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, 7th edition, Ed. Academic Press, 2007, p.341.
[23] T. Wang, G. Giannakis, and R. Wang, “Smart regenerative relays for link-adaptive cooperative communications,”IEEE Transactions on Communications, vol. 56, no. 11, pp. 1950–1960, 2008.
指導教授 張大中(Dah-chung Chang) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明