參考文獻 |
[1] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, ser. SIGCOMM ’03. Karlsruhe, Germany: ACM, Aug. 25–29, 2003, pp. 27–34.
[2] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot, “Pocket switched networks and human mobility in conference environments,” in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, ser. WDTN ’05, Philadelphia, USA, Mar. 19–23, 2005, pp. 244–251.
[3] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and wait: an efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, Philadelphia, PA, Aug. 22–26, 2005, pp. 252–259.
[4] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling spatial and temporal dependencies of user mobility in wireless mobile networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp. 1564 –1577, Oct. 2009.
[5] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Department of Computer Science, Duke University, Tech. Rep. CS-2000-06, Apr. 2000.
[6] Y.-F. Hsu and C.-L. Hu, “Erasure coding-based routing for message multicasting in delay-tolerant networks,” in Proceedings of the 2012 IET International Conference on Frontier Computing - Theory, Technologies and Applications (IET FC’12), Xining,China, Aug. 16–18, 2012.
[7] T. Spyropoulos, R. N. R. T. Turletti, K. Obraczka, and A. Vasilakos, “Routing for disruption tolerant networks: taxonomy and design,” Wireless Networks,vol. 16, no. 8, pp. 2349–2370, Nov. 2010.
[8] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, “Impact of human mobility on opportunistic forwarding algorithms,” IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 606–620, Jun. 2007.
[9] T. Karagiannis, J.-Y. L. Boudec, and M. Vojnović, “Power law and exponential decay of intercontact times between mobile devices,” IEEE Transactions on Mobile Computing, vol. 9, no. 10, pp. 1377–1390, Oct. 2010.
[10] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently connected networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, no. 3,pp. 19–20, Jul. 2003.
[11] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility,” in Proceedings of the Fifth IEEE International Conference on Pervasive Computing and Communications Workshops, New York, USA, Mar. 19–23, 2007, pp.79–85.
[12] E. Daly and M. Haahr, “Social network analysis for information flow in disconnected delay-tolerant manets,” IEEE Transactions on Mobile Computing,vol. 8, no. 5, pp. 606 –621, May 2009.
[13] J. Wu and Y. Wang, “Social feature-based multi-path routing in delay tolerant networks,” in Proceedings of IEEE INFOCOM, Florida,USA, Mar. 25–30, 2012,pp. 1368 –1376.
[14] A.-K. Pietilänen and C. Diot, “Dissemination in opportunistic social networks: The role of temporal communities,” in Proceedings of the Thirteenth ACM Tnternational Symposium on Mobile Ad Hoc Networking and Computing(MobiHoc’12), Hilton Head Island, South Carolina, Jun. 11–14, 2012, pp.165–174.
[15] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Characterising temporal distance and reachability in mobile and online social networks,” ACM SIGCOMM Computer Communication Review (CCR), vol. 40, no. 1, pp. 118–124,Jan. 2010.
[16] M. E. J. Newman, “Modularity and community structure in networks,” Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582,Jun. 2006.
[17] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10,no. 11, pp. 1576 –1589, Nov. 2011.
[18] G. Palla, I. Dere´nyi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol.435, no. 7043, pp. 814–818, Apr. 2005.
[19] P. Hui and J. Crowcroft, “How small labels create big improvements,” in Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops(PerCom Workshops ’07), New York, USA, Mar. 19–23, 2007, pp. 65–70.
[20] W. Gao, G. Cao, T. L. Porta, and J. Han, “On exploiting transient social contact patterns for data forwarding in delay-tolerant networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 1, pp. 151 –165, Jan. 2013.
[21] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: Self-similar least action human walk,” IEEE/ACM Transactions on Networking, vol. 20, no. 2,pp. 515 –529, Apr. 2012.
[22] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk nature of human mobility,” IEEE/ACM Transactions on Networking, vol. 19,no. 3, pp. 630–643, Jun. 2011.
[23] M. C. Gonza´lez, C. A. Hidalgo, and A.-L. Baraba´si, “Understanding individual human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, Jun.2008.
[24] D. Brockmann, L. Hufnagel, and T. Geisel, “The scaling laws of human travel,”Nature, vol. 439, no. 7075, pp. 462–465, Jan. 2006.
[25] C. Boldrini and A. Passarella, “Hcmm: Modelling spatial and temporal properties of human mobility driven by users’ social relationships,” Computer Communications, vol. 33, no. 9, pp. 1056 – 1074, Jun. 2010.
[26] M. Musolesi and C. Mascolo, “Designing mobility models based on social network theory,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 11, no. 3, pp. 59–70, Jul. 2007.
[27] Frans, Ekman, A. Keränen, J. Karvo, and J. Ott, “Working day movement
model,” in Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models, ser. MobilityModels ’08. Hong Kong SAR, China: ACM, May 27–30, 2008, pp. 33–40.
[28] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, Oct. 2008.
[29] T. Hossmann, T. Spyropoulos, and F. Legendre, “Putting contacts into context: Mobility modeling beyond inter-contact times,” in Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing(MobiHoc’11), Paris, France, May 16–20, 2011, pp. 18:1–18:11.
[30] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai, “Adaptive algorithms for detecting community structure in dynamic social networks,” in Proceedings of IEEE INFOCOM, Shanghai, China, Apr. 10–15, 2011, pp. 2282 –2290.
[31] W. jen Hsu and A. Helmy, “On modeling user associations in wireless lan traces on university campuses,” in Proceedings of the 2nd International Workshop On Wireless Network Measurement, Boston,USA, Apr. 3, 2006.
[32] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evaluation,” in Proceedings of the 2nd International Conference on Simulation Tools and Techniques, Rome, Italy, Mar. 2-6, 2009, pp. 55:1–55:10.
[33] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull, “Graphviz and dynagraph – static and dynamic graph drawing tools,” in Graph Drawing Software, M. Junger and P. Mutzel, Eds. Springer-Verlag, 2003, pp. 127–148.
[34] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for exploring and manipulating networks,” 2009. |