博碩士論文 100521033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.17.150.89
姓名 鄭隆傑(Lung-chieh Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以有機金屬化學氣相沉積法成長於(111)矽基板之氮化鎵島狀結構及其特性研究
(Characteristics of Gallium Nitride Island Structures Grown on (111)Si by Metal Organic Chemical Vapor Deposition)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,氮化鎵磊晶在矽基板被視為一個重要的技術,此成長法可以降低氮化鎵光電半導體元件的成長。然而氮化鎵成長矽基板上會遇上兩個嚴重的問題,其一熱膨脹係數差異過大,導致降溫時,氮化鎵與矽基板之間容易產生裂縫,另一方面則是晶格常數差異過大,於導致氮化鎵材料中含有大量的缺陷,會大幅降低發光二極體的內部量子效率並影響其輸出功率。在降低缺陷部分,可藉由多次側向磊晶技術 (multi-ELO)、AlGaN/GaN超晶格結構和圖案式基板,尤其是利用多次側向磊晶技術可以大幅度降低缺陷密度,但是此技術需要額外的製程。
因此為了提升氮化鎵半導體在矽基板上的品質,本論文提出一個新穎的成長方法,藉由氮化矽奈米覆蓋層成長多重的錯位島狀結構,自基板附近產生的缺陷會被雙層錯位島狀結構改變行進路徑,進而降低氮化鎵半導體材料中的高密度刃狀差排缺陷和螺旋差排缺陷;更重要的是,此成長法不需要額外的圖案化製程,即可以達到多次側向磊晶技術。本研究針對三種結構探討其結構與光電特性:參考樣品為三層氮化鎵/氮化鋁鎵/氮化鋁堆疊結構,單島狀樣品則在第一層氮化鎵/氮化鋁鎵間插入氮化矽奈米覆蓋層,雙島狀樣品則為在第一和第二層氮化鎵/氮化鋁鎵間插入氮化矽奈米覆蓋層,此三樣品之缺陷密度分別為9.6×109 cm-2 、6×109 cm-2 、2.6×109 cm-2。光激光譜(photoluminescence)實驗顯示,此成長法也可以抑制氮化鎵黃光缺陷訊號。在上述三種結構上成長的藍色發光二極體(LED)亦反映其缺陷密度在光電特性上。LED操作電壓依序降低從(Ref @ 20mA) 3.58 V、3.51 V和3.38 V。相較於參考樣品結構,在20 mA下,具雙島狀緩衝層LED之外部輸出功率和插頭效率分別提升了27%和34.5%。
摘要(英) In recent years, growing GaN on (111) silicon substrates has been regarded as a competitive technique to achieve low-cost optical and power GaN devices. One of the key issues is the 17% lattice constant mismatch between GaN and silicon substrate, resulting a dislocation density as high as 1010 cm-2. Several methods have been proposed to reduce the dislocation density, including multi-epitaxial-lateral-overgrowth (multi-ELO), AlGaN/GaN superlattice and patterned substrate. Although the multi-ELO method could reduce dislocation density significantly, it still needs an extra regrowth process.
This paper reports on a new method to reduce threading dislocation density in GaN epilayers grown on (111) silicon substrates by metal-organic vapor phase epitaxy. The method utilizes an in-situ double layer SiNx nano-mask to produce the so-called double island structure with lower dislocation densities without any regrowth procedure. This double island structure can bend and reduce dislocations, which pass through the samples without island structures. Compared to samples without the island structure, there is an improvement in the EPD of the sample grown with the single island structure from 1×1010 cm-2 to 6×109 cm-2. Furthermore, the EPD of the sample with the double island structure can be reduced to 2.6×109 cm-2. This method can also suppress the intensity of yellow luminescence by up to ten times. The operating voltages of LEDs with reference (w/o island structure), single and double island samples were 3.58 V, 3.51 V, and 3.38 V, respectively. Compared to the conventional GaN buffer LED, the output power and wall-plug efficiency are respectively enhanced about 27 % and 34.5 % at an injection current of 20 mA for the LEDs with the double island structures.
關鍵字(中) ★ 氮化鎵
★ 發光二極體
★ 島狀結構
★ 氮化矽
★ 矽基板
關鍵字(英) ★ GaN
★ Light emitter diode
★ Island structure
★ SiNx
★ Silicon substrate
論文目次 論文摘要 IV
Abstract VI
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XV
第一章 導論 1
1.1前言 1
1.2研究動機 3
1.3氮化物成長在矽基板之簡介 5
第二章 使用選擇性磊晶方法成長氮化鎵多層島狀結構於(111)矽基板上之結構設計與成長方法 13
2.1氮化鎵成長在(111)矽基板實驗製備 13
2.2成長氮化鎵島狀結構於(111)矽基板之成長方法 15
2.2.1氮化鎵島狀之磊晶方法 15
2.2.2氮化鋁鎵/高溫/低溫氮化鋁插入層於島狀結構之接合影響 17
2.3氮化鎵雙層島狀結構之成長方法 25
第三章 使用選擇性磊晶技術成長雙層氮化鎵島狀結構於矽基板上之特性分析 34
3.1簡介 34
3.2氮化鎵多層島狀結構之晶格品質分析 36
3.2.1氮化鎵島狀結構之缺陷模型 36
3.2.2二次島狀結構之氮化鎵X-光繞射rocking curve量測分析 38
3.2.3二次島狀結構之光致螢光光譜量測分析 41
3.3氮化鎵多層島狀結構之缺陷分析 44
3.3.1雙層島狀結構之EPD缺陷分析 44
3.3.2雙層島狀結構之CL分析 47
3.3.3 雙層島狀結構之TEM分析 49
第四章 具多層島狀結構之發光二極體光電量測分析 52
4.1前言 52
4.2具多層島狀結構發光二極體與X光繞射量測 58
4.3具多層島狀結構發光二極體光電特性 60
4.3.1發光二極體電特性與片電阻量測分析 62
4.3.2發光二極體輸出功率與外部量子效率量測 67
4.3.3發光二極體之電激發螢光光譜量測探討 69
第五章 結論與未來改進方向 76
參考文獻 78
參考文獻 [1] D. Zhu, C. McAleese et al,” Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates” J. Appl. Phys. Vol 109, pp 014502 (2011)
[2] R. Clos, A. Dadgar, and A. Krost,” Wafer curvature in the nonlinear deformation range” Phys. Stat. Sol. (a) 201, No. 7, pp 75-78 (2004)
[3] A. Krost, A. Dadgar, et al,” Evolution of stress in GaN heteroepitaxy on AlN∕Si(111): From hydrostatic compressive to biaxial tensile” Appl. Phys.Lett. vol 85, pp 3441 (2004).
[4] A. Dadgar, A. Strittmatter et al,” Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon” Phys. tat. sol. (c) No. 6, pp 1583–1606 (2003)
[5] Z. L. Weber and D. Cherns, “Microstructure of laterally overgrown GaN layers,” J. Appl. Phys, vol. 89, pp. 7833, 2001.
[6] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. Borghs,“Flat GaN epitaxial layers grown on Si(111) by metal organic vapor phase epitaxy using step-graded AlGaN intermediate layers,” J. Electron. Mater, vol. 35, pp. 592-598, 2006.
[7] C.H. Chiu, C.C. Lin, D.M. Deng, D.W. Lin, J.C. Li, Z.Y. Li, G.W. Shu, T.C. Lu, J.L. Shen, H.C. Kuo and K.M. Lau,“Optical and Electrical Properties of GaN-Based Light Emitting Diodes Grown on Micro- and Nano-Scale Patterned Si Substrate,” IEEE J. Quantum Electron, vol. 47, pp. 899, 2011.
[8] T.S. Zheleva, O.H. Nam, W.M. Ashmawi, J.D. Grin and R.F. Davis,“Lateral epitaxy and dislocation density reduction in selectively grown GaN structures,” J. Crystal. Growth, vol. 222, pp. 706-718, 2001..
[9] H. Witte et al,“Electrical investigations of AlGaN/AlN structures for LEDs on Si(111)”Phys. Stat. Sol. (a) 208, No. 7, pp 1597-1599, (2011).
[10] A. Dadgar, M. Poschenrieder et al,” Reduction of stress at the initial stages of GaN growth on Si (111)” Appl. Phys.Lett. vol 82, pp 28 (2003).
[11] A. Krost, A. Dadgar, et al,” In situ monitoring of the stress evolution in growing group-III-nitride layers” J. Crystal. Growth, vol 275, (2005), pp 209-216.
[12] Benamara, et al,” Study of high-quality GaN grown by OMVPE using an intermediate layer” Journal of Crystal Growth, vol 218 (2000) pp 447-450
[13] A. E. Romanova and J. S. Speckb,“Stress relaxation in mismatched layers due to threading dislocation inclination” Appl. Phys.Lett. vol 83, pp 2569 (2003)
[14] Kazumasa Hiramatsu, et al,” Epitaxial lateral overgrowth techniques used in group III nitride epitaxy” J. Phys.: Condens. Matter, vol 13 (2001) ,pp 6961–6975
[15] O. Chelda-Gourmala, et al,” Complete HVPE experimental investigations: Cartography of SAG GaN towards quasi-substrates or nanostructures” Journal of Crystal Growth, vol 312 (2010) pp 1899-1907
[16] Kang Jea Lee, Eun Ho Shin, and Kee Young Lim,” Reduction of dislocations in GaN epilayers grown on Si(111) substrate using SixNy inserting layer” Appl. Phys. Lett. vol 85, pp 1502 (2004)
[17] I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch and J. Salzman,“Yellow luminescence and related deep levels in unintentionally doped GaN films” Phys. Rev. B, vol 56, no.15, 1999.
[18] G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont and P. Gibart,“Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN” Appl. Phys. Lett, vol.74, no.19, 1999.
[19] Michael A. Reshchikov and Hadis Morkoç,” Luminescence properties of defects in GaN” J. Appl. Phys. Vol 97, pp 06130 (2005)
[20] L. Lu, et al,” Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition” J. Appl. Phys. Vol 104, pp 123525 (2008)
[21] L. Leong,” Physics of Metal-Semiconductor Contact and Circular Transmission Line Model ”
[22] Y.-L. Li, Y.-R. Huang and Y.-H. Lai,” Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light emitting diodes with varying quantum well thickness” Appl. Phys. Lett , vol.91, pp.181113, 2007.
[23] Zhe Chuan Feng, et al,” Optical and structural studies of dual wavelength InGaN/GaN tunnel-injection light emitting diodes grown by metalorganic chemical vapor deposition” Thin Solid Films, vol 529 (2013), pp269–274
[24] Yong-Hoon Cho, et al,” S-shaped’’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells” Appl. Phys. Lett, vol.73, pp.1370, 1998.
[25] J.H. Chen, et al,“Study of carrier localization in InGaN/GaN quantum well blue-light-emitting diode structures” Journal of Crystal Growth, vol 287 (2006) pp 354-358
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2013-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明