博碩士論文 985401001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.144.172.9
姓名 鍾華晏(Hua-Yen Chung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究
(Study on Transmission Line Transformers for Silicon-Based Power Amplifier and Mixer Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究
★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製
★ 應用於K / V 頻段低功耗混頻器之研製★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究
★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文主要研究晶片型之Ruthroff型態傳輸線型變壓器的設計,藉由其寬頻、低損耗的特性,成功實現了寬頻高效率的功率放大器及寬頻低損耗的混波器。此外,我們也使用了整合被動元件( Integrated Passive Devices: IPD)的製程,更進一步減少晶片型變壓器的介入損耗及提高射頻電路的效率。本篇論文所呈現的變壓器電路型態一共有兩類,第一類為兩個不平衡轉不平衡(unbalanced-to-unbalanced, un-to-un)型式的變壓器,其阻抗轉換比分別為1:4與1:9;第二類為三個平衡轉不平衡(balanced-to-unbalanced, balun)型式的變壓器,其阻抗轉換比分別為1:4、1:1、及9:4。在1:4與1:9 un-to-un型式的變壓器設計中,皆採用IPD的製程來設計,展現出最低的介入損耗分別為0.5 dB及0.57 dB,其介入損耗1-dB的頻寬百分比分別為175%及140%。另外,也利用覆晶(flip-chip)的封裝技術,垂直整合了CMOS 0.18 m及IPD製程,實現了一個CMOS-IPD的寬頻高效率功率放大器設計,此放大器可達飽和輸出功率26.18 dBm、功率增進效率(power added efficiency: PAE) 47.4%、及33.8%的1-dB頻寬百分比。而在balun型態的變壓器設計中,首次將1:4 Ruthroff型態的balun設計在0.18 m CMOS晶片上,展現出最小的介入損耗約0.71 dB及94.2%的10-dB反射損耗頻寬百分比,同時也應用在單平衡式(single-balanced)混波器的設計上,使得混波器在6 dBm的本地源(LO)驅動下,最低的轉換損耗僅12.48 dB,轉換損耗3-dB的頻寬可涵蓋2.5 GHz到7 GHz。
由於傳統1:4 Ruthroff型態的balun是一種阻抗提升的轉換方式,即其平衡端阻抗是固定高於不平衡端的阻抗,而為了使此寬頻低損耗的balun可應用於CMOS功率放大器中作為功率結合器,我們也使用IPD的技術,設計了兩個修改版Ruthroff型態的balun,此新型態的balun可使平衡端的阻抗低於非平衡端的阻抗,以符合CMOS功率放大器使用上的需求。相較於傳統1:4 Ruthroff型態的balun,其阻抗轉換為由不平衡端的50 Ω轉換到平衡端的200 Ω,我們所提出的1:1及9:4兩種獨有的型態,不僅可分別執行阻抗轉換由50 Ω 轉到50 Ω及由50 Ω 轉到22.2 Ω,同時在平衡端所在的次級繞線上存在虛接地點,可作為好的直流饋入處,使功率放大器設計上可省去射頻扼流圈(RF choke)的使用,進而可提高整體的效率且也有降低晶片面積的優點。在1:1 IPD balun的設計上,展現出最小的介入損耗約0.46 dB及73.2%的10-dB反射損耗頻寬百分比,而在9:4 IPD balun的設計上,展現出的最小介入損耗約0.75 dB,而10-dB的反射損耗頻寬百分比約為52.8%。為了更進一步驗證所提出的balun型態具有直流饋入點的功能,也使用了一個旁路電容及一個直流阻絕電容來取代電路原本直接接地的地方,成功地在IPD晶片上驗證了所提出的1:1及9:4兩種具有直流饋入點功能的balun。量測結果與模擬結果相當接近,在所設計頻段內的特性,具有直流饋入點功能的balun與無需直流饋入功能的balun,也有相近的表現。
摘要(英) This dissertation focuses on the research of on-chip Ruthroff-type transmission-line transformers. By utilizing the broadband and low-loss on-chip Ruthroff-type transformers, a wideband and high-efficiency power amplifier and a wideband low-loss passive mixer were successfully achieved. Besides, The Integrated Passive Devices (IPD) technology was utilized to further reduce the insertion loss of the transformers and to improve the efficiency of RF circuits. In this dissertation, two types of transformers are presented. The first type is two unbalanced-to-unbalanced (un-to-un) transformers with the impedance transformation ratio of 1:4 and 1:9, respectively. The other type is three balanced-to-unbalanced (balun) transformers with impedance transformation ratio of 1:4, 1:1 and 9:4, respectively. The 1:4 and 1:9 un-to-un transformers were fabricated using IPD process. They exhibit the minimum insertion losses of 0.5 dB and 0.57 dB and the correspondent 1-dB fractional bandwidths of 175% and 140%, respectively. Moreover, utilizing the flip-chip package technology, a CMOS-IPD PA produced using vertical heterogeneous integration of standard 0.18 m CMOS technology and IPD technology was fabricated with an output power of 26.18 dBm, a PAE of 47.4%, and the 1-dB fractional bandwidths of 33.8%. In the balun type of transformers, the 1:4 Ruthroff-type balun was first designed using standard 0.18 m CMOS technology with a minimum insertion loss of 0.71 dB and the 10-dB return loss fractional bandwidths of 94.2% which is defined as the in-band return loss exceeds 10 dB. Utilizing the broadband and low-loss characteristics of Ruthroff-type balun, a simple single-balanced mixer with the balun demonstrates a minimum conversion loss of 12.48 dB with a 3-dB bandwidth from 2.5 to 7 GHz while the LO drive of 6 dBm.
The 1:4 Ruthroff-type balun is an impedance step-up balun whose balanced impedance is higher than that of the unbalanced one. For utilizing Ruthroff-type balun as a broadband and low-loss power combiner in CMOS power amplifiers, two new modified Ruthroff-type baluns with step-down impedance transformation, whose balanced impedance is lower than that of unbalanced one, were developed using IPD technology. Compared with 1:4 Ruthroff-type baluns which transfers the impedance from 50 Ω to 200 Ω, the proposed 1:1 and 9:4 baluns not only perform the impedance transformation from 50 Ω to 50 Ω and from 50 Ω to 22.2 Ω, respectively, but also have the center tap at the secondary winding of balanced ports. A power amplifier with a balun of having a center tap at the balanced winding can obviate the need of RF choke, which could improve the efficiency of power amplifier and reduce the chip area and cost. The proposed 1:1 balun exhibits an insertion loss of 0.46 dB with the 10-dB returned loss fractional bandwidths of 73.2%, and the proposed 9:4 balun exhibits an insertion loss of 0.75 dB with the 10-dB returned loss fractional bandwidths of 52.8%. To further verify the function of the proposed balun with a center tap, the testkeys of 1:1 and 9:4 baluns using a bypass capacitor and a DC block capacitor as ac ground were also developed using IPD technology. The measured results have good agreements with the simulations and show that the in-band performances of the balun with a center tap are close to those of the balun without additional capacitors.
關鍵字(中) ★ Ruthroff傳輸線型變壓器
★ 整合被動元件製程
★ 巴倫
★ 功率放大器
★ 混頻器
關鍵字(英) ★ Ruthroff-type TLT
★ Integrated passive devices
★ balun
★ Power amplifier
★ mixer
論文目次 摘要 I
Abstract III
誌謝 V
Contents VI
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
1-1. Motivation 1
1-2. Literature Survey 3
1-3. Contributions 5
1-4. Dissertation Organization 7
Chapter 2 Introduction to Transmission Line Transformers 8
2-1. Introduction 8
2-2. Guanella-type and Ruthroff-type TLT and Balun 9
2-3. Analysis of Ruthroff-type TLT and Balun 11
Chapter 3 A Broadband and High-Efficiency Power Amplifier that Integrates CMOS and IPD Technology 14
3-1. Introduction 14
3-2. IPD Process 15
3-3. Passive Devices on IPD 16
3-3-1 Designs of 1:4 and 1:9 TLTs 16
3-3-2 RFC and Input Matching Inductor 19
3-4. Broadband and High-efficiency PA 21
3-4-1 Design Considerations 21
3-4-2 Implementation 23
3-5. Measurements 25
3-5-1 Output Power and Efficiency 25
3-5-2 Modulation Signals 27
3-6. Summary 29
Chapter 4 A 2.5-7 GHz Single-balanced Mixer with An Integrated Ruthroff-type Balun in 0.18-µm CMOS Technology 30
4-1. Introduction 30
4-2. Design of Ruthroff-type Balun 31
4-3. Broadband Single-balanced Mixer 33
4-4. Summary 36
Chapter 5 Two New Broadband and Low-loss Modified Ruthroff-type Baluns with Step-down Impedance Transformation Using IPD Technology 37
5-1. Introduction 37
5-2. IPD Process 38
5-3. Design of Ruthroff-type 1:4 TLT Balun 39
5-4. Proposed Impedance Step-down TLT Baluns 44
5-4-1 Proposed 1:1 TLT Balun 44
5-4-2 Proposed 9:4 TLT Balun 48
5-5. Measurements of Proposed 1:1 and 9:4 Baluns 52
5-6. The Proposed Balun with a Center Tap 55
5-7. Summary 58
Chapter 6 Conclusion & Future Work 60
6-1. Conclusion 60
6-2. Future Work 61
Reference 62
Publication List 67
參考文獻 [1] C. L. Ruthroff, “Some broadband transformers,” Proc. of the IRE., vol. 47, pp. 1337-1342, Aug. 1959.
[2] J. Sevick, “Magnetic materials for broadband transmission line transformers,” High Freq. Electron., pp. 48-53, Jan. 2005.
[3] J. Horn and G. Boeck, “Ultra broadband ferrite transmission line transformer,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2003, pp. 433-436.
[4] G. J. Pablo, O. Pablo, M. S. Enrique, “Analysis and design procedure of transmission-line transformers,” IEEE Trans. Microwave Theory & Tech., vol. 56, no. 1, pp. 163–171, Jan. 2008.
[5] M. Engels, R. H. Jansen, W. Daumann, R. M. Bertenburg, and F. J. Tegude, “Design methodology, measurement and application of MMIC transmission line transformers,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 1995, pp. 1635-1638.
[6] I. J. Bahl, “Broadband and compact impedance transformers for microwave circuits,” IEEE Microw. Mag., vol. 7, issue 4, pp. 56-62, Aug. 2006.
[7] H. K. Chiou and H. Y. Liao, “Broadband and low-Loss 1:9 transmission-line transformer in 0.18-μm CMOS process,” IEEE Electron Devices Lett., vol. 31, no. 9, pp. 921–923, Sept 2010.
[8] D. H. Lee, D. Baek, H. Kim, and S. Hong, “An on-chip low-loss 1:9 transmission line transformer and its model,” Microw. Opt. Technol. Lett., vol. 48, no. 10, pp.1936–1940, Oct. 2006.
[9] H. Y. Liao, M. W. Pan and H. K. Chiou, “Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer, ” Electron Lett., vol. 46, pp. 1490–1491, Oct. 2010.
[10] D. Kuylenstierna and P. Linn´er, “Design of broad-band lumped-element baluns with inherent impedance transformation,” IEEE Trans. Microwave Theory & Tech., vol. 52, no. 12, pp. 2739–2745, Dec. 2004.
[11] D. Kuylenstierna and P. Linn´er, “Is the second order lattice balun a good solution in MMICs– A comparison with a direct-coupled transformer balun,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2005, pp. 539-542.
[12] C. Meng and S. C. Tseng, “Gilbert mixers with microwave quadrature/differential generators: An approach for millimeter-wave IC,” in 2009 IEEE Radio and Wireless Symp., Jan. 2009, pp. 650-653.
[13] C. H. Lien, C. H. Wang, C. S. Lin, P. S. Wu, K. Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Trans. Microwave Theory & Tech., vol. 57, no. 8, pp. 1966–1977, Aug. 2009.
[14] C. H. Chen, C. H. Huang, T. S. Horng, S. M. Wu, C. T. Chiu, C. P. Hung, J. Y. Li, and C. C. Chen, “Very compact transformer-coupled balun-integrated bandpass filter using integrated passive device technology on glass substrate,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2010, pp. 1372-1375.
[15] C. H. Lien, C. H. Wang, C. S Lin, P. S. Wu, K. Y. Lin, and H. Wang, “Design of an on-chip balun with a minimum amplitude imbalance using a symmetric stack layout,” IEEE Trans. Microwave Theory & Tech., vol. 58, no. 4, pp. 1966–1977, Apr. 2010.
[16] C. H. Tseng, Y. C. Hsiao, “A new broadband Marchand balun using slot-coupled microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 157–159, Mar. 2010.
[17] C. Liu and W. Menzel, “Broadband via-free microstrip balun using metamaterial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 437–439, July 2008.
[18] C. I. Shie, Y. H. Pan, K. S. Chin, Y. C. Chiang, “A miniaturized microstrip balun constructed with two λ/8 coupled lines and a redundant line,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 12, pp. 663–665, Dec. 2010.
[19] T. G. Ma, C. C. Wang, C. H. Lai, “Miniaturized distributed Marchand balun using coupled synthesized CPWs,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 188–190, Apr.. 2011.
[20] C. H. Huang, T. S. Horng, C. C. Wang, C. T. Chin, and C. P. Hung, “Optimum design of transformer-type Marchand balun using scalable integrated passive device technology,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 8, pp. 1370-1377, Aug. 2012.
[21] S. M. Wu, W. Y. Lin, K. Y. Wang, C. H. Huang, and W. K. Yeh, “The high balance symmetric balun for WLAN and WiMAX application using the integrated passive device (IPD) Technology,” in 2009 Electronic Packaging Technology & High Density Packaging, ICEPT-HDP’09, Aug. 2009, pp. 14-17.
[22] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182–184, Apr. 1999.
[23] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Spiral transmission-line baluns for RF multichip module packages,” IEEE Trans. Adv. Packag., vol. 22, no. 3, pp. 332–336, Aug. 1999.
[24] J. Y. Ihm and K. P. Hwang, “RF balun embedded in multilayer organic substrate,” Microw. Opt. Technol. Lett., vol. 34, no. 4, pp. 255–259, Aug. 2002.
[25] H. K. Chiou, and J. Y. Lin, “Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microwave Theory & Tech., vol. 59, no. 6, pp. 1529–1538, June 2011.
[26] G. Guanella, “New method of impedance matching in radio-frequency circuits,” The Brown Boveri Rev., vol. 31, pp. 125-127, Sept. 1944.
[27] A. Grebennikov, “Power combiners, impedance transformers and directional couplers,” High Freq. Electron., pp. 20–38, Dec. 2007.
[28] E. Rotholz, “Transmission-line transformers,” IEEE Trans. Microwave Theory & Tech., vol. MTT-29, no. 4, pp. 327-331, Apr. 1981.
[29] J. Sevick, Transmission Line Transformers, 4th ed., Atlanta: Noble Publishing corporation, 2001.
[30] C. Trask, “Transmission line transformers: theory, design and applications,” High Freq. Electron., pp. 26-32, Jan. 2006.
[31] J. E. Post, “Analysis and design of planar, spiral-shaped, transmission-line transformers,” IEEE Trans. Adv. Packag., vol. 30, issue. 3, pp. 104-114, Feb. 2007.
[32] W. Blocker, “The behavior of the wide-band transmission-line transformer for non-optimum line impedance,”Proc. of the IEEE, vol. 66, no. 4, pp. 518–519, Apr. 1978.
[33] C. Trask, “Transmission line transformers: theory, design and applications,” High Freq. Electron., vol. 4, pp. 46-53, Dec. 2005.
[34] N. Sahan, M. E. Inal, S. Demir, and C. Toker, “High-power 20-100 MHz linear and efficient power-amplifier design,” IEEE Trans. Microwave Theory & Tech., vol. 56, no. 9, pp. 2032–2039, Sept. 2008
[35] J. Sevick, “A simplified analysis of the broadband transmission line transformer,” High Freq. Electron., vol. 3, pp. 48-53, Feb. 2004.
[36] H. Y. Chung, Y. C. Hsu, H. K. Chiou, D. C. Chang, and Y. Z. Juang, “Broadband and low-loss Ruthroff-type transmission line transformer in integrated passive devices technology,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[37] H. Lee, C. Park, and S. Hong, “A quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer,” IEEE Trans. Microwave Theory & Tech., vol. 57, no. 4, pp. 752–759, April 2009.
[38] P. Reynaert and M. S. J. Steyaert, “A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598–2608, Dec. 2005.
[39] D. Sira, P. Thomsen, and T. Larsen, “Output power control in class-E power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 232–234, Apr. 2010.
[40] T. Sowlati and D. M. W. Leenaerts, “A 2.4-GHz 0.18-m CMOS self-biased cascode power amplifier,” IEEE J. Solid-state Circuits, vol. 38, no. 8, pp. 1318–1324, Aug. 2003.
[41] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode class-E PAs,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1222–1229, May 2006.
[42] S. C. Cripps, “Cultural transformation,” IEEE Microw. Mag., vol.10 issue 6, pp. 28-40, Oct. 2009.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2013-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明