以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:41 、訪客IP:3.144.90.108
姓名 郭銘浩(Ming-hao Kuo) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 “量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製
(“Designer” Ge Quantum Dots on Si:A Novel Heterostructure Configuration with Enhanced Near Infrared Photodetectors and Phototransistors)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文利用調控預先定義好之複晶矽鍺柱之鍺含量、幾何圖形大小,以及熱氧化時間,來精準控制鍺量子點的直徑大小、位置及鑽入矽材的深度,以達成量身訂作鍺量子點/矽異質結構之功效。經由高解析度穿隧式電子顯微鏡與能量散佈光譜儀觀察分析鍺量子點與矽的異質界面確認此法可以精準地置放鍺量子點在矽底材上,而且藉由矽與鍺之間約3–4 nm的二氧化矽來化解矽與鍺之間4.2 %晶格不匹配的問題。利用此鍺量子點/矽異質結構,本文成功地製備出高品質的鍺近紅外光偵測器與光電晶體。
將50 nm 鍺量子點陣列整合於金屬-氧化物-半導體 (MOS) 二極體的閘極堆疊層中可以有效地提升在可見光至近紅外光的光電轉換效率與光響應。分別在400–1000 nm、1160、1500 nm光源照射下,鍺量子點金氧半二極體所展現之光電流與暗電流比值可高達35,000、1,800與87倍,且具有非常低之暗電流 (1.1 A/cm2)。在近紅外線光照射下,鍺量子點/矽界面所累積之正電荷造成內建電場的產生,有利於元件操作速度的提升。螢光光激發譜線也證實此50 nm量子點的光激發峰值約在 0.9 eV (約在1380 nm),由強度相依的螢光譜線解晰可知此1380 nm的螢光譜線是來自於導/價電帶之間激子之交互作用,另由溫度解析的螢光譜線強度可萃取出其活化能量約10.72 meV。
最後將 50 nm鍺量子點陣列整合於金氧半光電晶體中,能夠在 850 nm 的光源照射下展現清楚的光調變能力。汲極的光飽和電流與暗電流之比值增益可以達到 310 %。本文所呈現之鍺量子點光偵測元件之製作完全與現行之互補式金氧半電晶體技術相容,所提供之高品質鍺/矽異質結構與光元件有利於積體電路中光連結的應用。摘要(英) In this thesis, we have successfully demonstrated Ge quantum dots (QDs) of desired size, location and depth of penetration into the Si substrate using the control available through nano-patterning and selective oxidation of SiGe pillars over a buffer layer of Si3N4 deposited over the Si substrate. Transmission electron microscopy (TEM) and electron dispersive x-ray spectroscopy (EDX) analyses reveal that a 3–4 nm thin amorphous interfacial oxide is present between the Ge QD and the Si substrate, successfully improving the crystalline quality of the Ge QD by de-coupling the lattice-mismatching constraint of 4.2%.
A low dark current of 1.1μA/cm2 and a high photocurrent-to-dark current ratio of 35,000 and 1,800, and 87 respectively, under 1.5 mW illumination at the wavelength of 400-1000, 1160, and 1500 nm were measured on MOS photodiodes based on the 50-nm-GeQD/Si structures. Notably the photocurrent almost becomes saturated at zero bias, revealing a strong built-in E-field within the QD that would enhance the operating speed of Ge QD photodetectors. The corresponding photoluminescence (PL) peak of 50-nm-Ge QD centered at 0.9eV with a fitted α of 0.96 from the power dependent PL spectra suggest the PL emission being dominated by exciton recombination in the Ge QDs. The activation energy (Ea) extracted from temperature dependent PL is about 10.72 meV.
Finally, we incorporated a 50-nm-Ge QD-array into a phototransistor (W/L=10 m/10 m) and demonstrated a large ratio of photo drain current to dark current up to 310% under 850-nm illumination. The demonstrated high-performance Ge QD MOS photodetector was realized in a CMOS compatible approach, offering a great potential for future Si-based optical interconnection applications.關鍵字(中) ★ 鍺量子點
★ 近紅外線
★ 光偵測器關鍵字(英) 論文目次 目錄
第一章 鍺/矽異質結構簡介與研究動機 1
1-1 鍺/矽異質結構簡介 1
1-2 鍺材沉積在矽材上所遭遇的問題 3
1-3 鍺/矽異質結構研究動機 4
1-4鍺量子點形成與光特性 5
1-5 論文概要 6
第二章 量身訂作鍺量子點/矽異質結構成長與其光學特性 12
2-1前言 12
2-2鍺量子點之成長、定位/定數與材料結構/物理特性解析 12
2-2-1置放鍺量子點於SiO2 13
2-2-2 鍺量子點誘發的氮化矽局部氧化效應 13
2-2-3 驅動鍺量子點在氮化矽中移動的來源 14
2-2-4 置放鍺量子點於 Si3N4 或矽底材 14
2-3 量身訂作的鍺量子點 15
2-4 鍺量子點形貌 16
2-4-1 鍺量子點內部缺陷 16
2-4-2 鍺量子點埋入矽底材的深度 17
2-5 鍺量子點陣列的光子激發光光譜 18
第三章 光偵測二極體與光電晶體設計與關鍵製程 27
3-1 前言 27
3-2 鍺量子點光偵測二極體與光電晶體設計構想 27
3-2-1金屬-氧化物-半導體光偵測二極體設計構想 27
3-2-2金屬-氧化物-半導體光電晶體設計構想 28
3-3光偵測二極體與光電晶體的關鍵製程 29
3-3-1關鍵製程-量身訂作鍺量子點 29
3-3-2關鍵製程-閘極介電層厚度的控制 29
3-4光偵測二極體製作完整流程 31
3-5光電晶體製作完整流程 32
第四章 光偵測二極體與光電晶體電性量測分析與探討 49
4-1前言 49
4-2量測系統的設置與調整 49
4-3光偵測二極體光電特性量測分析 50
4-3-1 光偵測二極體之波長相依特性 50
4-3-2 光偵測二極體之功率相依特性 53
4-4光電晶體電性量測分析 53
4-4-1光電晶體之汲極電流–閘極電壓 (ID–VG) 電氣特性 54
4-4-2光電晶體之汲極電流–汲極電壓 (ID–VD) 電氣特性 54
第五章 結論與未來展望 64
參考文獻 66參考文獻 參考文獻
[1] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, vol. 99, p.1151, 1955.
[2] J. Michel, J. Liu and L. C. Kimerling,“High-performance Ge-on-Si photodetectors.” Nature Photonics, 4, p527, 2010
[3] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices,” Physical Review Letters, vol. 66, p. 2903, 1991.
[4] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Physical Review Letters, vol. 64, p. 1943, 1990.
[5] Roosevelt people, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE Journal of Quantum Electronics, vol. 22 (9), p. 1696, 1986.
[6] S. B. Samavedam and E. A. Fitzgerald, “Novel dislocation structure and surface morphology effects in relaxed Gee/Si-Ge(graded)/Si structure,” Journal of Appl. Phys. Lett., vol. 81, p. 3108, 1997.
[7] J. L. Liu, et al., “High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers,” Appl. Phys. Lett., 79, 3431, 2001.
[8] H. C. Luan et al., “High-quality Ge epilayers on Si with low threading -dislocation densities,” Appl. Phys. Lett., vol. 75, p. 2909, 1999.
[9] Q. Li et al., “Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy,” Appl. Phys. Lett.,vol. 83, p. 5032, 2003.
[10] J. S. Park et al., “Defect reduction of selective Ge epitaxy in trenches on Si(100) substrates using aspect ratio trapping,” Appl. Phys. Lett., vol. 90, p.052113, 2007.
[11] G. L. Luo et al., “The annihilation of threading dislocations in the germanium epitaxially growth within the silicon nanoscale trenches,” Journal of The Electrochemical Society, vol. 156(9), H703, 2007.
[12] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, 18 145402, 2007.
[13] K. H. Chen et al., “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, 21 055302, 2010.
[14] C. Y. Chien et al., “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, 22 435602, 2011.
[15] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., vol. 101, p.223107, 2012.
[16] P. W. Li et al., “Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator,” Jpn. J. Appl. Phys., 43, 7788, 2004.
[17] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。
[18] S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” Journal of Applied Physics, Vol. 82, p. 3870, 1997.
[19] T. Schmidt, K. Lischka and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B, Vol. 45, p. 8989, 1992.
[20] C. Y. Chien et al., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, Vol. 21, p. 505201, 2010.
[21] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics,” Appl. Phys. Lett., Vol. 83, p. 4628, 2003.
[22] S. S. Tseng, I. H. Chen, and P. W. Li, “ Photorespones in Poly-Si Phototransistors Incorporating Germanium Quantum Dots in the Gate Dielectrics,” Appl. Phys. Lett., 93, 191112, 2008.
[23] 陳英豪,“閘介電層含鍺量子點複晶矽薄膜電晶體之光響應研究”,碩士論文,國立中央大學,民國98年。
[24] C. C. Wang et al., “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, vol. 11, no. 4, p. 657-660.
[25] J. Liu et al., “Ge-on-Si optoelectronics,” Thin Solid Films, 520, 3354–3360, 2012.指導教授 李佩雯(Pei-wen Li) 審核日期 2013-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare