博碩士論文 100323080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.138.143.72
姓名 林翰良(Han-liang Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙光子聚合微製造技術之三維結構 製造品質改進研究
(A Quality Improvement Research for Three Dimensional Structure Fabricated by Two-photon Polymerization Micro-manufacturing Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進★ 組織工程用冷凍成型製造系統 之自動化製作流程開發
★ 自動相機校正與二維影像輪廓萃取研究★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究
★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合
★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究
★ 聚醚醚酮之積層製造系統開發★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙光子聚合(Two-photon Polymerization, TPP)微製造技術由於可製作任意三維外形之微/奈米尺寸級之結構,因而逐漸受到矚目。目前主要的研究,集中在以添加式製造技術中常見的層加工方式(即所謂的2.5維度(2.5dimension)加工方法)來製作微結構。然而TPP微製造是屬於純三維加工技術,理應據此獨特性質發展一套創新方法,來提高製造效率與良率。首先利用實驗室所發展之製造微產品之電腦輔助製造系統產生雷射加工路徑檔案,該系統具有自動切層、規劃加工路徑以及體素大小設定等功能。本論文提出一種創新的想法為體素為基(voxel based)之雷射調整方法,利用高斯光束公式推導出不同能量之體素大小,本論文稱為能量均勻橢圓體,藉由此方法來提高微結構製成效率與品質。其次利用本論文所開發之軟體MicFom來進行雷射加工路徑模擬,研究內容包含能量均勻橢圓體(Energy Uniform Ellipsoid)重疊率之計算、雷射路徑加工模擬、最佳化模擬等。最後利用本實驗室設備製造出幾項微產品,以證明所提出之方式可以有效的提高微結構產品之製成效率與尺寸精準度。
摘要(英) The Two-photon Polymerization (TPP) micro-fabrication technique draws everyone’s attention gradually because of its fabrication capability of arbitrary-shaped and complex three-dimensional (3D) micro/nano-structures. Up to present, most of researches are used the layer-by-layer method, as known as two-and-half-dimensional (2½D) method which is a common manner in additive manufacturing technology, along one specific direction to produce 3D microstructures. However, the TPP micro-fabrication technique can produce microstructures in pure 3D way. This unique characteristic should be taken into account to develop a novel manner for increasing the manufacturing efficiency and yield. The final purpose of this research is developing a 3D and multi-scale (mm/μm/nm) micro-manufacturing method based on TPP micro-fabrication technique. First, a Computer-aided manufacturing (CAM) system with automatic slicing, path planning, voxel setting is developed for manufacturing of micro products by TPP. This paper prove a new way to improve the quality of micro-structure. Second, using the software to simulation the laser paths. Study of research content, including calculate the overlap of energy uniform ellipsoid. Simulation the laser paths. Optimization laser paths. In the end, fabricating micro-structure by TPP to prove that the proposed method can effectively improve the efficiency of micro-structure and size of products made of precision.
關鍵字(中) ★ 雙光子光致聚合
★ 雙光子吸收
★ 微製造
★ 能量模擬
★ 高斯光束
關鍵字(英) ★ Two-Photon Photopolymerization
★ Two-Photon Absorption
★ Micro-Manufacturing
★ Gaussian Beam
論文目次 中文摘要 …………………………………………………………………………………………………………i
英文摘要 …………………………………………………………………………………………………………ii
目錄 …………………………………………………………………………………………………………iii
圖目錄 …………………………………………………………………………………………………………v
表目錄 …………………………………………………………………………………………………………vii
符號說明 …………………………………………………………………………………………………………vii
一、 緒論…………………………………………………………………………………………………1
1-1 背景…………………………………………………………………………………………………1
1-2 文獻回顧…………………………………………………………………………………………4
1-3 研究動機與目的……………………………………………………………………………13
1-4 論文大綱…………………………………………………………………………………………15
二、 雙光子微製造技術相關之文獻與理論說明……………………………16
2-1 雙光子微聚合製造技術………………………………………………………………16
2-2 TPP微結構之製造品質問題………………………………………………………19
2-3 TPP微結構之尺寸精準問度題…………………………………………………23
2-4 高斯光束…………………………………………………………………………………………25
2-5 TPP微製造技術之電腦輔助系統………………………………………………28
三、 微結構外觀品質改善研究…………………………………… ……………………31
3-1 過曝缺陷之觀察……………………………………………………………………………31
3-2 網格點資料分群演算法………………………………………………………………34
3-3 體素為基之雷射曝光調整方法…………………………………………………37
3-4 電腦輔助計算能量均勻橢圓體之重疊區域……………………………43
四、 微結構之雷射曝光能量模擬結果……………………………………………48
4-1 簡單具夾角之二維雷射掃描路徑模擬……………………………………48
4-2 複雜二、三維結構模擬………………………………………………………………53
4-3 最佳化模擬……………………………………………………………………………………57
五、 結論與未來展望……………………………………………………………………………64
5-1 結論…………………………………………………………………………………………………64
5-1 未來展望…………………………………………………………………………………………64
參考文獻 …………………………………………………………………………………………………………65
參考文獻 [1] Goepper, M.-M., “ Elementary processes with two quantum jumps” , Annalen der Physik, Vol. 9, No. 2, pp. 273-294, 1931.
[2] Kaiser, W. and Garrett, C. -G., “ Two-photon excitation in CaF2:Eu2+” , Physical Review Letters, Vol. 7, No. 6, pp. 229-231,1961.
[3]潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[4] Maruo, S. and Kawata, S.,“Two-photonabsorbed near-infrared photopolymerization for three-dimensional microfabrication”, Journal of Microelectromechanical Systems, Vol.7, No.4, pp.411-415, 1998.
[5] Maruo, S., Nakamura, O. and Kawata, S., “Three-dimensional microfabrication with two-photon-absorbed photopolymerization”, Optics Letters, Vol. 22, pp. 132-134 ,1997.
[6] Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B. -N., Houbertz, R., Domann, G., Schulz J., Cronauer, C., Frohlich, L. and Popall, M., “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics”, Optics Letters, Vol. 28, pp. 301-1303, 2003.
[7]Maruo, S., Ikuta, K., and Korogi, H., “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography”,Journal of Microelectromechanical Systems, Vol. 12, pp. 533-539 , 2003.
[8] Maruo, S. and Inoue, H., “Optically driven micropump produced by three-dimensional two-photon microfabrication”, Applied Physics Letter , 89 , 144101.
[9] Lin, C.-L., Lee, Y.-H., Lin, C.-T., Liu, Y.-J., Hwang, J.-L., Chung, T.-T. and Baldeck, P. L., “Multiplying optical tweezers force using a micro-lever” , Optics Express , Vol.19 , pp.20604-20609 , 2011.
[10] Baldeck, P.L., Lin, C.-L., Lin, Y.-S., Lin, C.-T., Chung, T.-T., Bouriau, M. annd Vitrant, G., “Optically driven archimedes micro-screws for micropump applications: multiple blade design” , Proceedings of the SPIE , Vol.8097 , pp.809713-809713-5,2011.
[11] Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.Y.S., McCord-Maughon, D., Qin, J.Q., Rockel, H., Rumi, M., Wu, X.L., Marder, S.R. and Perry, J.W., “Two photon polymerization initiators for three-dimensional optical data storage and microfabrication” , Nature , Vol.398 , pp.51–54 , 1999.
[12] Borisov, R.A., Dorojkina, G.N., Koroteev, N.I., Kozenkov, V.M., Magnitskii, S.A., Malakhov, D.V., Tarasishin, A.V., and Zheltikov, A.M., “Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization” , Applied Physics, Vol.67, pp.765–767 , 1998.
[13] Sun, H.-B., Matsuo, -S. and Misawa, H., “Three-dimensional photonic crystal structures achieved with two-photonabsorption photopolymerization of resin” , Applied Physics Letter , 74 , pp.786–788 , 1999.
[14] Deubel, M., Von Freymann, G., Wegener, M., Pereira, S., Busch, K. and Soukoulis, C.M., “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications” , Nature Mater , Vol. 3 , pp.444–447 , 2004.
[15] Guo, R., Li, Z.Y., Jiang, Z.W., Yuan, D.J., Huang, W.H. and Xia, A.D., “Log-pile photonic crystal fabricated by twophoton photopolymerization” , Journal of Optics:Pure and Applied Optics , Vol.7, pp.396–399 , 2005.
[16] Serbin, J., Ovsianikov, A. and Chichkov, B., “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties” , Opical Express , Vol.12 , pp.5221–5228 , 2004.
[17] Kaneko, K., Sun, H.B., Duan, X.M. and Kawata, S., “Submicron diamond-lattice photonic crystals produced by twophoton laser nanofabrication” , Applied Physics Letter , Vol.83 , pp.2091–2093 , 2003.
[18] Deubel, M., Wegener, M., Kaso, A. and John, S., “Direct laser writing and characterization of “slanted pore” photonic crystals” , Applied Physics Letter , Vol. 85 , pp.1895–1897 , 2004.
[19] Seet, K.K., Mizeikis, V., Matsuo, S., Juodkazis, S. and Misawa, H., “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing” , Advanced Materials , Vol.17 , pp.541–545 , 2005.
[20] Seet, K.K., Mizeikis, V., Juodkazis, S. and Misawa, H., “Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm” , Applied Physics Letter , Vol. 88 , pp. 221101 , 2006.
[21] Grossman, N., Ovsianikov, A., Petrov, A., Eich, M. and Chichkov, B., “Investigation of optical properties of circular spiral photonic crystals” , Optical Express , Vol.15 , pp.13236–13243 , 2007.
[22] Deubel, M., Wegener, M., Linden, S., von Freymann, G. and John, S., “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing” , Optical Letter , Vol.31 , pp.805–807 , 2006.
[23] Tetreault, N., Von Freymann, G., Deubel, M., Hermatschweiler, M., Perez-Willard, F., John, S., Wegener, M. and Ozin, G.A., “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates” , Advanced Materials , Vol.18 , pp.457–460 , 2006.
[24] Kawata, S., Sun, H.-B. , Tanaka, T. and Takada, K., “Finer features for functional microdevices” , Nature , Vol.412 , pp.697-698 , 2001.
[25] Wang, I., Bouriau, M., Baldeck, P.L., Martineau, C. and Andraud, C., “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser” , Optics Letters , Vol.27 , pp.1348-1350 , 2002.
[26] Wu, S.H., Serbin, J., and Gu, M., “Two-photon polymerisation for three-dimensional micro-fabrication” , Journal of Photochemistry and Photobiology A:Chemistry , Vol.181 , pp. 1-11 , 2006.
[27] Sun, H.-B., and Kawata, S., “Two-photon laser precision microfabrication and it’s applications to micro-nano devices and systems” , Journal of Lightwave Technology, Vol. 21, pp. 624-633, 2003.
[28] Kawata, S., and Sun, H.-B., 2003, “Two-photon photopolymerization as a tool for making micro-devices” , Applied Surface Science , Vol.208-209 , pp. 153-158.
[29] Park, S.-H., Lee, S.-H., Yang, D.-Y., Kong, H.-J. and Lee, K.-S., “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization” , Applied Physics Letter , Vol.87 , pp.154108-154108-3, 2005.
[30] Liao, C.-Y., Bouriauand, M., Baldeck, P. L., Léon, J.-C., Masclet, C., and Chung, T.-T., “Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization” , Applied Physics Letter , Vol.91 , pp.033108-033108-3 , 2007.
[31] Fan, H., Liao, C.-Y., Léon, J.-C., Masclet, C., Bouriau, M., Baldeck, P. L. and Chung, T.-T., “2D/3D spiral hatching generation and surface roughness observation in TPP micro-fabrication” , in Proceedings of IDMME – Virtual Concept 2008, Beijing, China, 69IDMME, 2008.
[32] Hasegawa, T. and Maruo, S., “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures” , Micro-nanomechatronics and Human Science , pp.12–15 , 2007.
[33] Tseng, C.-L., “Design and fabrication of micro devices by two-photon polymerization technology” , Master Dissertation , National Taiwan University ,Taipei.
[34] https://en.wikipedia.org/wiki/Supercritical_fluid.
[35] Maruo, S. and Fourkas, J. T., “Recent progress in multiphoton microfabrication”, Laser & Photonics Reviews, Rev.2, No. 1-2, pp. 100-111, 2008.
[36] Park, S.-H., Kim, K.-H., Lim,T.-W., Yang, D.-Y. and Lee,K.-S., “Investigation of three-dimensional pattern collapse owing to surface tension using an imperfection finite element model” , Microeletronic Enginnering, Vol.85 , pp.432-439 ,2008.
[37] Takada, K., Sun, H.-B. and Kawata, S., “The study on spatial resolution in two-photon induced polymerization” , Proceedings of SPIE , Vol.6110 , pp.61100A-1-61100A-7 ,2006.
[38] Sun, H.-B., Suwa, T., Takada, K., Zaccaria, R. P., Kim, M.-S., Lee, K.-S. and Kawata, S., “Shape precompensation in two-photon laser nanowriting of photonic lattices” , Applied Physics Letter , Vol.85 , pp. 3708-3710 ,2004.
[39] Lim, T. W., Son, Y., Yang, D.-Y., Pham, T. A.,Kim, D.-P.,Yang, B.-I., Lee, K.-S., Park. S.U., “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders” , International Journal of Applied Ceramic Technology , Vol.5 ,pp.258-264,2008.
[40] Sun, H.-B., Takada, K., Kim, M.-S., Lee, K.-S. and Kawata, S., “Scaling laws of voxels in two-photon photopolymerization nanofabrication” , Applied Physics Letters , Vol.83 , pp. 1104-1106 , 2003.
[41] Park, S.-H., Lim, T.-W., Lee, S.-H., Yang, D.-Y., Kong, H.-J. and Lee, K.-S., “Fabrication of microstructures using double contour scanning (DCS) method by two-photon polymerization” , Polymer-Korea , Vol.29 , pp.146-150 , 2005.
[42] Yang, D.-Y., Park, S.-H., Lim, T.-W., Kong, H.-J., Yi, S.-W., Yang, H.-K. and Lee, K.-S., “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization” , Applied Physics Letters , Vol.90 ,pp.013113-013113-3 , 2007.
[43] Park, S.-H., Yang, D.-Y. and Lee, K.-S., “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices” , Laser & Photonics Reviews , Vol.3 , pp.1-11,2009.
[44] Lim, T.-W., Park, S.-H., Yang, D.-Y., Yi, S.-W., Kong, H.-A. and Lee, K.-S., “Contour offset algorithm (COA) in nano replication printing (nRP) for fabricating nano-precision features” , Journal of Mechanical Science and Technology , Vol.19 , pp.2105-2111,2005.
[45] Lin, C.-T., Fan, H., Bouriau, M., Liao, C.-Y., Lin, C.-L.,Masclet, C., Leon, J.-C., Chung, T.-T., Baldect , P. L., “Simulation and correction of angular defects in two-photon lithography” , Journal of Photopolymer Science and Technology ,Vol.24 , PP.651-655,2011.
[46] Sun, H.-B., Maeda, M., Takada, K., Chon, J. W. M., Gu, M. and Kawata, S., “Experimental investigation of single voxels for kaser nanofabrication via two-photon photopolymerization”, Applied Physics Letters , Vol.83 , pp. 819-821, 2003.
[47] Lim, T.-W., Park, S.-H., and Yang, D.-Y., “Contour offset algorithm for precise patterning in two-photon polymerization” , Microelectronic Engineering , Vol.77 , pp. 382-388, 2005.
[48] Liao, C.-Y., “Product model creation and simulation for two-photon polymerization
micro-manufacturing” , Doctoral Dissertation , University of Joseph Fourier and National Taiwan University, France and Taiwan, 2008.
[49] Thiel, M., Fischer, J., Von Freymann, G., and Wegener, M., “Direct laser writing of three-dimensional submicron structures using a continuous-wave aaser at 532 nm” , Applied Physics Letters , No.22 , Vol.97 , pp. 221102- 221102-3, 2010.
[50] Lai, H.-C., “On the development of triangle meshes processing techniques for geometric models” , Doctoral Dissertation , National Central University, Taiwan, 2010.
[51]http://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E5%85%89%E6%9D%9F.
[52]https//zh.wikipedia.org/wiki/%E5%A4%9A%E9%A1%B9%E5%BC%8F%E6%8F%92%E5%80%BC.
指導教授 廖昭仰(Chao-yaug Liao) 審核日期 2013-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明