博碩士論文 100323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.81.234
姓名 潘昆嵩(Kuen-sung Pan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 SP-700鈦合金之 微結構及機械性質研究
(Study on microstructure and mechanical properties of SP-700 Ti-alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係針對SP-700 鈦合金經固溶處理、淬火冷卻後施以不同冷加工量,再進行時效處理,藉由顯微結構與機械性質的分析,探討不同微結構下之拉伸變形特性。
  結果顯示SP-700鈦合金經固溶處理水淬後,合金微結構為
塊狀初析α相(αp)、β殘留相(βr)及散佈於βr之針狀麻田散鐵相(α”);若水淬合金施以冷加工,初析α相(αp)、與麻田散鐵相(α”) 並未因加工而與水淬合金有所差異,但殘留β相(βr)將藉由應力誘發麻田散鐵相變化而數量減少,轉變為較硬脆之針狀麻田散鐵相(α”),針狀麻田散鐵相(α”)析出量隨著冷加工量上升而增加,且變得更為密集和細緻。
  水淬合金經時效處理後,針狀麻田散鐵相(α”)與殘留β相(βr)均將相變化為α+β平衡相,此時微結構為原先已存在的初析α相(αp),及針狀麻田散鐵相(α”)轉變為球狀α平衡相中散佈著細小β平衡相顆粒,與殘留β相(βr)轉變為β平衡相中散佈著細小的α平衡相顆粒。水淬合金經冷加工後再施以時效處理,隨著冷加工量上升α”麻田散鐵析出量增加且更為細緻,時效過後α平衡相數量也就更多且更為細小,且冷加工導致殘留β相(βr)晶粒高變形,時效後形成細致的β平衡相。
  水淬合金進行拉伸試驗時,由於βr為較軟韌相,合金發生「應力誘發麻田散鐵」相變化,合金因而呈現明顯加工硬化,造成淬火合金於拉伸過程中顯現高延性與高強度。水淬合金經冷加工後,因冷加工時已發生應力誘發麻田散鐵相變化的緣故,故於拉伸試驗時,隨著冷加工量的增加,二次硬化現象便越不明顯。
  水淬合金經時效處理後,其微結構因較硬脆的α平衡相增多,且無「應力誘發麻田散鐵」相變化,故時效後合金之降服強度大幅提升,且拉伸過程無顯著二次硬化現象,以致延性不高。水淬合金經冷加工-時效處理後,其微結構相較未加工之合金為細緻,所以其降伏強度會稍高於未加工之合金,但同樣地延性也不高。
關鍵字:SP-700、應力誘發、冷加工
摘要(英) The study analyzes the characteristics of tensile deformation under the different microstructures for SP-700 titanium alloy undergoing solution treatment and water quenching, followed by applying different amount of coldworking and aging treatment through the analysis of microstructure and mechanical properties.
   The results show that the microstructure of SP-700 titanium alloy contains block primary α-phase (αp), residual β-phase (βr) and lamellar-martensite phase (α”) distributed in βr after solution treatment and water quenching. The application of coldworking for water quenching alloy does not show difference on primary α-phase (αp) and lamellar-martensite phase (α”) due to work and quenching alloy. However, residual β-phase (βr) will reduce the quantity due to changes in the stress induced for lamellar-martensite phase, which then turns into hardened and brittle lamellar-martensite phase (α”). Lamellar-martensite phase (α”) increases following the rise in the amount of coldworking to become more intense and delicate.
  The lamellar-martensite phase (α”) and residual β-phase (βr) will both undergo phase change into α+β equilibrium phase for water quenching alloy after receiving aging treatment, whereas the microstructure becomes the previously exiting primary α-phase (αp) while the lamellar-martensite phase (α”) transits into spherical α equilibrium phase distributed with tiny particles of β equilibrium phase and the residual β-phase (βr) transits into β equilibrium phase distributed with tiny particles of α equilibrium phase. After applying coldworking and aging treatment to the quenching alloy, the amount of α” lamellar-martensite phase increases following the rise in coldworking while becoming more delicate. After the aging treatment, the amount of α equilibrium phase becomes more and finer, while the cooling work causes the crystalline grains of residual β phase (βr) to increase and deform, forming more delicate β equilibrium phase after aging treatment.
  When the water quenching alloy undergoes tensile testing, the alloy will undergo phase change with “stress induced for lamellar-martensite” due to the soft-tenacity phase contained in βr, which causes alloy to present significant hardening and the quenching alloy to exhibit high ductility and strength. After undergoing coldworking, quenching alloy will have less significant secondary hardening phenomenon during tensile testing with increasing coldworking, due to the change of stress induced for lamellar-martensite already occurred during coldworking.
  Water quenching alloy will have substantial increase of yield strength after aging treatment since its microstructure increase in more hardened and brittle α equilibrium phase and without the phase change in “stress inducted for lamellar-martensite.”The ductility appears low due to the lack of significant secondary hardening phenomenon during the tensile process. The microstructure of water quench alloy undergone coldworking and aging treatment will have slightly highly yield strengthen than alloy without work while ductility remains low in the similar manner.
Keywords: SP-700, Stress induced martensite, Coldworking
關鍵字(中) ★ SP-700
★ 應力誘發
★ 冷加工
關鍵字(英) ★ SP-700
★ Stress induced martensite
★ Coldworking
論文目次 第一章總目錄
摘要……………………………………………………………….... Ⅰ
總目錄……………………………………………………………… III
圖目錄……………………………………………………………… V
表目錄……………………………………………………………… VI
一、前言…………………………………..……………………….. 1
二、文獻回顧……………………………………………………… 2
2.1鈦合金分類…….…..……………………………….……….. 2
2.1.1純鈦……………….…………………………………..... 3
2.1.2 α型鈦合金……………………………………………… 4
2.1.3 α+β型鈦合金…………………………………...………
………………………………………….. 5
2.1.4 β型鈦合金………………………………………………
7
2.1.5 SP-700的簡介與其性質…………………..…………… 9
2.2 鈦合金的熱處理…………………………………………… 10
2.2.1熱處理溫度高於β轉換溫度…………………..………度……………………………………………………...
10
2.2.2熱處理溫度略低於β轉換溫度……………..…………度……………………………………………...
11
2.2.3熱處理溫度低於麻田散體轉換溫度…………………… 11
2.3 鈦金麻田散鐵相變化………………………………………
14
2.4 康式準則(Considere’s criterion)………………… 16
2.5 冷加工對鈦合金之影響…………………………………… 19
三、實驗流程……………………………………………………… 21
3.1 實驗材料…………………………………………………… 21
3.1.1金相觀察及硬度試驗之試片………………………….. 21
3.1.2 拉伸試驗試片…………………………………………. 22
3.2 實驗步驟…………………………………………………… 23
3.3 實驗設備…………………………………….……………… 24
3.3.1光學顯微鏡(OM) ………………………….……………
24
3.3.2掃瞄式電子顯微鏡(SEM) ……………………………… 24
3.3.3 微差掃描分析儀(DSC) ……………….……………….. 24
3.3.4 X光粉末繞射儀………………………….…………….. 25
3.3.5硬度試驗…………………………………….….………. 25
3.3.6拉伸試驗……………………………………..…………. 25
四、結果與討論………………………………………………….... 26
4.1 微結構觀察與分析…………………………………………. 26
4.1.1 SP-700鈦合金固溶處理水淬後不同冷加工量……….
26
4.1.2 SP-700鈦合金固溶處理水淬後不同冷加工量並時效 30
4.1.3 DSC微差熱掃描儀分析……………………………….. 35
4.2 機械性質……………………………………………………. 37
五、結論…………………………………………………………… 43
六、參考文獻………………………………………………………
44
參考文獻 [ATT]M.M.Attallah,S.Zabeen,R.J.Cernik,M.Preuss, ”Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron micro scopy”, Materials Characterization 60 (2009) pp.1248-1256
[BOY] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International (1994) p.11
[BOY1] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International (1994) p.125
[BOY2] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International (1994) p.377
[BOY3] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International (1994) p.687
[BRE] William D. Brewer, R. Keith Bird, Terryl A. Wallace, “Titanium Alloys and processing for high speed aircraft”, Materials Science and Engineering A243 (1998) pp.299-304
[BRO1] Brooks CR. Heat treatment, structure and properties of non ferrous alloys. Metals Park (OH): ASM International (1982) p.329
[BRO2] Brooks,C.R, Nonferrous Alloys, American Society for Metals (1984)
[DAV] J.R. Davis(EDs), “Metals handbook:Titanium and Titanium alloys”, Materials Park, Oh. : ASM International (1998), p.575
[DUE] T.W. Duerig, J. Albrecht, D. Richter, P. Fischer,
“Formation and
Reversion of
Stress
Induced Martensite
in
Ti‐10V‐2Fe‐3Al”, Acta
metall Vol.30 (1982) pp.2161‐2172
[GRO] T. Grosdidier, M.J. Philippe, “Deformation induced martensite and superelasticity in a β-metastable titanium alloy”, Materials Science & Engineering A291 (2000) 218–223
[GUN] Gunawarman, Mitsuo Niinomi, Kei-ichi Fukunaga, Daniel Eylon, Shiro Fujishiro, Chiaki Ouchi, “Fracture Characteristics And Microstructureal Factors In Single And Duplex Annealed Ti-4.5Al-3V-2Mo-2Fe”, Material Science & Engineering A308 (2001) 216-224.
[HIL1] Robert E. Reed-Hill, Physical Metallurgy Principle, PWS Publishing Company (1994) p.158
[HIL2] Robert E. Reed-Hill, Physical Metallurgy Principle, PWS Publishing Company (1994) p.706
[KAO] Y.L. Kao, G.C. Tu, C.A. Huang, T.T.Liu, “A Study on the Hardness variation of α- and β-pure titanium with different grain sizes,” Material Science & Engineering A (2005) pp.93-98
[OUC] Chiaki Ouchi, Hideaki Fukai, Kohei Hasegawa, “Microstructural Characteristic And Unique Properties Obtained By Solution Treating Or Aging in β-rich α+β Titanium Alloy”, Material Science & Engineering A263 (1999) pp.132-136
[POL] I.J.Polmear, Light Alloys Metallurgy of the Light Meral, forth edtion(2006) p.354
[SER] Sergey Zherebtsova , Gennady Salishcheva, Witold Łojkowski,"Strengthening of a Ti–6Al–4V titanium alloy by means of hydrostatic extrusion and other methods",Materials Science & Engineering A515 (2009) pp.43-48
[YOS] Yoshikazu Mantani, Yoshito Takemoto, Moritaka Hida, Akira Sakakibara, Mamoru Tajima,” Phase Transformation ofα”Martensite Structure by Aging in Ti-8 mass%Mo Alloy”, Materials Transactions Vol.45 No.5 (2004) pp.1629-1634
[ZHA] Zhang Zhanying, Wang Weimin, Cao Jimin, Xiao Songtao, ”Effect of Cold Deformation on Microstructure and Mechanical Properties of Ti13Nb13Zr Titanium Alloy” , Hot Working Technology 38(22),(2009) pp.66-68
指導教授 李勝隆(Sheng-long Lee) 審核日期 2013-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明