博碩士論文 100323037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.222.163.31
姓名 陳毅灃(Yi-feng Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 錳、鋅與均質化處理對Al-4.6Mg鑄造合金機械及腐蝕性質之影響
(Effect of Mn, Zn additions and homogenization treatment on the mechanical and corrosion properties of Al-4.6Mg casting alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構分析,探討錳、鋅與均質化處理對Al-4.6Mg鑄造合金機械及腐蝕性質之影響。
結果顯示錳與鋅元素具有固溶強化效果。而添加錳之合金更有細晶效果,且於均質化溫度下(480℃)會充分析出細小之MnAl4相,故於室溫下顯現細晶與散佈強化效果,其中均質化後水淬之合金,固溶在鋁基地中的鎂原子較經爐冷之合金為高,致使水淬比爐冷之合金顯現較高之固溶強度,然而均質化後不論水淬或爐冷之合金,其在鋁基地中固溶的錳原子含量相近,並不造成固溶強度差異。而含鋅之合金在爐冷過程中雖會析出η相(MgZn2),因析出量較少,故均質化後不同冷卻方式對強度影響主要以β相(Mg2Al3)析出,造成固溶的鎂原子消耗為主。
合金經(200℃X3天)敏化處理後,因均質化後水淬狀態比爐冷狀態擁有較高的鎂過飽合度,在敏化初期(1天)於晶界上會析出連續緻密且細小的β相(Mg2Al3),但敏化達3天時,則β相(Mg2Al3)粗化而成不連續態。當合金中同時含有鋅時,經敏化3天後,β相(Mg2Al3)雖會粗化而不連續,但結合η相(MgZn2)卻會在晶界上而形成連續態,其中當合金同時含有錳與鋅元素時,因錳元素所導致的細晶效果,提供更多β相(Mg2Al3)與η相(MgZn2)成核位置,致使合金受到最嚴重的沿晶腐蝕破壞。
藉由均質化爐冷製程,雖會降低合金強度,但因爐冷過程中的部分鎂及鋅原子會析出β相(Mg2Al3)與η相(MgZn2),在後續的敏化處理,將會導致β相與η相粗化,彼此間距較遠,造成不連續的析出相,可改善η相對合金腐蝕性之傷害,但其抗蝕能力仍較不含鋅合金差。
摘要(英) The study analyzes microstructure of Mn, Zn and homogenization treatment on Al-4.6Mg casting alloy mechanical and corrosive properties.
The results show that both Mn and Zn elements come with solid solution strengthening effects. On the other hand, alloy added with Mn offers refinement and can fully precipitates fine MnAl4 phase under homogenization temperature (480℃), which there by exhibiting refinement and dispersion strengthening effect under room temperature. In particular, the alloy having undergone homogenization quenching will have more magnesium atoms of solid solution in the aluminum base than alloy undergone furnace cooling, resulting in higher solid solution strength for quenching alloy than furnace-cooling alloy. Nonetheless, the alloy, regardless of quenching or furnace-cooling after homogenous treatment, will have similar content of Mn atoms for solid solution in the alloy base without causing difference between the solid solution strength. Although alloy containing Zn will precipitates η phase (MgZn2) during the furnace-cooling process, the main impact comes from the precipitation of β phase (Mg2Al3) using different cooling method after homogenous treatment, which hence leads primarily to the consumption of magnesium atoms in the solid solution.
Having undergone the sensitization treatment (200℃X3days), the quenching state for alloy after homogenization treatment will have higher magnesium saturation than furnace cooling state, while consecutive, delicate and fine β phase (Mg2Al3) will be precipitated on the grain boundary at early sensitization period (Day 1). However β phase (Mg2Al3) will become coarse and discontinued on the 3rd day of sensitization. When alloy contains Zn at the same time, although β phase (Mg2Al3) will become coarse and discontinued after 3 days of sensitization, it will combine with η phase (MgZn2) and forms consecutive state on the grain boundary. In particular, when the alloy contains Mn and Zn elements concurrently, the Mn elements will lead to grain effect, providing more nuclear position for β phase (Mg2Al3) and η phase (MgZn2), causing alloy to suffer from the most serious damage of intergranular corrosion.
Although the homogenization furnace-cooling process could lower alloy strengthen, the β phase (Mg2Al3) and η phase (MgZn2) precipitated by some Mg and Zn atoms during the furnace cooling process, the follow-up sensitization treatment will cause β phase and η phase to become coarse. Nonetheless, the further gap between the two causes discontinued precipitation phase to improve the relative damage of η to alloy corrosion while its anti-corrosion capacity is still worse than alloy without containing Zn.
關鍵字(中) ★ 鋁鎂合金
★ 沿晶腐蝕
★ β相(Mg2Al3)
★ η相(MgZn2)
關鍵字(英) ★ Al-Mg alloy
★ Intergranular corrosion
★ β-Phase(Mg2Al3)
★ η-Phase (MgZn2)
論文目次 總目錄
中文摘要..................................................I
英文摘要................................................III
謝誌......................................................V
總目錄..................................................VI
圖目錄...................................................IX
表目錄...................................................XII
一、研究背景與文獻回顧..................................... 1
1.1合金簡介與研究背景......................................................................... 1
1.2 添加金屬元素對鋁合金之影響......................................................... 3
1.2.1 鎂對鋁合金的影響........................................................................ 3
1.2.2 錳對鋁合金的影響........................................................................ 5
1.2.3 鋅對鋁合金的影響........................................................................ 7
1.2.4 鋯對鋁合金的影響........................................................................ 9
1.2.5 其他元素對鋁合金的影響............................................................ 9
1.3 均質化處理對鋁鎂合金的影響....................................................... 10
1.4 鋁鎂合金及鋁鋅鎂合金之腐蝕簡介............................................... 12
1.4.1 鋁鎂合金之腐蝕機制.................................................................. 12
1.4.2 鋁鋅鎂合金之腐蝕機制.............................................................. 12
1.5 影響鋁鎂合金腐蝕性質之因素......................................................... 13
1.5.1 敏化溫度與時間對腐蝕性質之影響.......................................... 13
1.5.2 鎂含量對腐蝕性質之影響…...................................................... 15
1.5.3 介金屬化合物對腐蝕性質之影響.............................................. 16
1.6 熱處理對鋁鋅鎂合金腐蝕性質的影響............................................. 18
1.6.1 固溶處理後不同冷卻影響…...................................................... 18
1.6.2 不同時效處理的影響………...................................................... 19
.1.7 實驗設計與目的…….…………………………………………...... 20
二、實驗步驟與方法.......................................21
2.1 合金融配及成份分析....................................................................... 21
2.2均質化處理................................................................... 23
2.3 敏化處理...................................................................... 23
2.4 微結構分析……………………………………………….……... 23
2.4.1光學顯微鏡(Optical Microscopy)….……...……………… 23
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy)………. 24
2.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy)…….... 26
2.4.4 導電度量測(Electrical Conductivity, %IACS)…………..…… 26
2.5 機械性質分析…………………………………..……………… 26
2.5.1 硬度檢測(Hardness, HRF)…………………...…………… 26
2.5.2 拉伸試驗(Tensile Test)…………………………………… 27
2.6沿晶腐蝕性質分析…………..…………………………………….. 27
三、結果與討論............................................29
3.1 微結構分析………………………………………………...…… 29
3.1.1 鑄態微結構……………………..………………...…..…… 29
3.1.2 均質化微結構………………….…….……………...……… 34
3.1.3敏化處理微結構………………………….…...…...……… 41
3.1.4導電度量測………………………..…...……..………….… 50
3.2 機械性質分析…………………………………………….………... 53
3.2.1 硬度檢測………………………..…….…………………… 53
3.2.2 拉伸試驗……..……..………...……………………………… 57
3.3 腐蝕性質分析……………………….…..………………………… 60
四、結論............................................ 67
五、參考文獻............................................. 68

圖目錄
圖1.1 鋁鎂合金之二元相圖…………………………...………. 4
圖1.2 添加鎂對退火純鋁板機械性質的影響..……..……….… 4
圖1.3 不同錳含量對鋁鎂合金(退火態)機械性質之影響……..響…………. 6
圖1.4 TEM微結構觀察MnAl6散佈於晶粒及晶界上...……… 6
圖1.5 不同鋅含量添加在純鋁經135℃時效之拉伸性質(a)固溶處理不同冷卻方式(b)添加其它元素(鎂、銅)溶處理不同冷卻方式(b)添加其它元素(鎂、銅)卻………………………………………………..
溶處理不同冷卻方式(b)添加其它元素(鎂、銅)…….…. 8
圖1.6 鋁鎂合金添加不同鋅含量經腐蝕試驗後之表面形貌….
    變圖.....構…………………….. 8
圖1.7 含鋅之鋁鎂合金藉由TEM觀察微結構........................... 9
圖1.8 鋁鎂合金鑄態及不同均質化處理後之電阻值…………. 11
圖1.9 鋁鎂合金經不同均質化處理之TEM微結構觀察………
效硬化曲線 11
圖1.10 AA5083-H116經不同溫度、時間之敏化處理腐蝕性質….質.……………… 14
圖1.11 AA5083-H131經100℃不同敏化時間之極化曲線........ 14
圖1.12 不同鎂含量之鋁鎂合金經182 ℃加熱100小時敏化處理….
理………………………………………………………….. 16
圖1.13 鋁鎂合金以及其它元素、介金屬化合物之還原電位…… 17
圖1.14 7075鋁鋅鎂合金經固溶處理(不同冷卻方式)後續時效之TEM微結構觀察工............................................
之TEM微結構觀察………………………………….…. 18
圖1.15 7178鋁鋅鎂合金之TEM微結構觀察…………………… 19
圖2.1 實驗流程………………………………………………….
工............................................ 22
圖2.2 試片取樣位置……………………………………………. 25
圖2.3 G67試片腐蝕形貌觀察取樣位置………………………. 25
圖2.4 ASTM cB557M 標準拉伸試棒規格…………………….
工............................................ 27
圖2.5 G67試片尺寸圖…………………………………………
…………………………………. 28
圖3.1 Al-4.6Mg鑄造合金鑄態之顯微結構..…..…..…….……. 30
圖3.2 Al-4.6Mg鑄造合金鑄態之β相析出型態……………….
工............................................ 32
圖3.3 D (0.8Mn+0.7Zn)合金鑄態之TEM觀察………………. 33
圖3.4 Al-4.6Mg鑄造合金經均質化後(水淬)之顯微結構……. 34
圖3.5 Al-4.6Mg鑄造合金經均質化後(爐冷)之顯微結構…….
工............................................ 35
圖3.6 Al-4.6Mg鑄造合金經均質化後(水淬)之β相析出型態... 37
圖3.7 Al-4.6Mg鑄造合金經均質化後(爐冷)之β相析出型態... 38
圖3.8 D (0.8Mn+0.7Zn)合金經均質化後(水淬)TEM觀察…….
工............................................ 39
圖3.9 D (0.8Mn+0.7Zn)合金經均質化後(爐冷)TEM觀察……. 40
圖3.10 Al-4.6Mg鑄造合金經均質化後(水淬)進行敏化處理之β相析出型態.
β相析出型態…………………………………………… 42
圖3.11 Al-4.6Mg鑄造合金經均質化後(水淬)進行敏化處理以SEM觀察β相析出型態工............................................
SEM觀察β相析出型態………………………………… 43
圖3.12 Al-4.6Mg鑄造合金經均質化後(爐冷)進行敏化處理之β相析出型態
β相析出型態……………………………………………. 44
圖3.13 Al-4.6Mg鑄造合金經均質化後(爐冷)進行敏化處理以SEM觀察β相析出型態.
SEM觀察β相析出型態………………………………… 45
圖3.14 D (0.8Mn+0.7Zn)合金經均質化後(水淬)進行不同時間的敏化處理以TEM觀察工............................................
的敏化處理以TEM觀察……………………………….. 47
圖3.15 D (0.8Mn+0.7Zn)合金經均質化後(爐冷)進行3天的敏化處理以TEM觀察
化處理以TEM觀察……………………………………... 47
圖3.16 Al-4.6Mg鑄造合金經不同均質化後敏化處理之G67重量損失測試
量損失測試……………………………………………… 62
圖3.17 Al-4.6Mg鑄造合金經均質化後(水淬)透過敏化處理之G67腐蝕試驗以SEM觀察腐蝕表面工............................................
G67腐蝕試驗以SEM觀察腐蝕表面………………….. 63
圖3.18 Al-4.6Mg鑄造合金經均質化後(爐冷)透過敏化處理之G67腐蝕試驗以SEM觀察腐蝕表面工............................................
G67腐蝕試驗以SEM觀察腐蝕表面………………….. 64


圖3.19 Al-4.6Mg鑄造合金經均質化(水淬)後透過敏化處理之G67腐蝕試驗以OM觀察橫截面
G67腐蝕試驗以OM觀察橫截面………………………
65
圖3.20 Al-4.6Mg鑄造合金經均質化(爐冷)後透過敏化處理之G67腐蝕試驗以OM觀察橫截面
G67腐蝕試驗以OM觀察橫截面………………………
66






表目錄
表1.1 不同成份之鋁鎂合金經層剝腐蝕試驗結果…………...... 8
表2.1 Al-4.6Mg鑄造合金成份分析表…………......................... 21
表3.1 Al-4.6Mg鑄造合金在鑄態及不同均質化處理後之晶粒大小….質…………........................................
大小..................................................................................... 29
表3.2 Al-4.6Mg鑄造合金於不同狀態之導電度量測(%IACS).. (%IACS)
52
表3.3 Al-4.6Mg鑄造合金於不同狀態所含微結構之權重定性分析質…………........................................
分析..……..………….. ..……..……..……..…………….. 55
表3.4 Al-4.6Mg鑄造合金於不同狀態之硬度檢測…………… (HRF)…..….質…………........................................ 56
表3.5 Al-4.6Mg鑄造合金於不同狀態之拉伸性質……………
…...…..….質…………........................................ 58
表3.6 Al-4.6Mg鑄造合金敏化處理前後ASTM G67 重量損失測試(mg/cm2)
質…………........................................
測試(mg/cm2) …..……………………....…………....……
62
參考文獻 [ASTM1] ASTM B928/B928M – 09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[ASTM2] ASTM B557M – 10 Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products.
[ASTM3] ASTM G67-04 Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test).
[ASTM4]ASTM E112-10 Standard Test Methods for Determining Average Grain Size.
[BOV] F.S. Bovard,“Corrosion in marine and saltwater environments II, in D.A. Shifler, T. Tsuru, P.M. Natishan, S. Ito (Eds.)” ,Electrochemical Society Proceedings,Vol. 2004-14, pp. 232-243.(2005)
[BUR]T. D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys”, Corrosion, Vol. 47, pp.89-98.(1991)
[CAR] M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn , B.R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083” , Scripta mater ,Vol. 42, pp.335-340. (2002)
[DAV1] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p.579.(1994)
[DAV2] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p.43.(1994)
[DAV3] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p. 31.(1994)
[DAV4] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p. 559.(1994)
[DAV5] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p. 675.(1994)
[DIX] E.H. Dix, Jr., W.A. Anderson, and M.B. Shumaker,“Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion” , Corrosion, Vol. 15, pp. 19-26.(1959)
[EAS]M. Easton and D. StJohn: “Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm”, Metallurgical and Materials Transactions A, Vol.30, pp. 1625-1633. (1999)
[ENG] Olaf Engler , Zhenshan Liu , Katrin Kuhnke, “Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454 Experiment and simulation” , Journal of Alloys and Compounds, Vol.560,pp.111-122 .(2013)
[ENJ1] Toshio Enjyo, Toshio Kuroda, Hideyuki Shinonaga, “Effect of Relatively Insoluble Compounds on β Phase Precipitation in 5083 Aluminum Alloy” , Transaction of JWRI, Vol.7,pp.25-32 .(1978)
[ENJ2] Toshio Enjyo, Toshio Kuroda, Hideyuki Shinonaga, “Effect of Relatively Insoluble Compounds and β Phase on Stress Corrosion Cracking in 5083 Aluminum Alloy” , Transaction of JWRI, Vol.8, pp.67-75.(1979)
[GAO] F.Gao, G.Zhao, W. Bian, N. Tian, “TEM In Situ Investigation on Non-Equilibrium Eutectics in Semicontinuous Casting Ingot of Al-6.2Zn-2.3Mg-2.3Cu Super-High Strength Aluminum Alloy” , Materials Science Forum, Vol.638, pp.384-389.(2010)
[GAR] M.A. Garcia-Bernala, R.S. Mishrab, R. Vermac, D. Hernandez-Silvad, “Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents” , Materials Science and Engineering A, Vol.534, pp.186-192.(2012)
[HAT1] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy”, ASM International Metals Park, Ohio, p.333.(1984)
[HAT2] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy” , ASM International Metals Park, Ohio, p.231.(1984)
[HAT3] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy” , ASM International Metals Park, Ohio, p.238.(1984)
[HAT4] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy” , ASM International Metals Park, Ohio, p.205.(1984)
[HUA] T.S. Huang, G.S. Frankel “ Kinetics of sharp intergranular corrosion fissures in AA7178” , Corrosion Science, Vol.49, pp.858-876, (2007).
[HUS] E.L. Huskins, B. Cao, K.T. Ramesh “Strengthening mechanisms in an Al–Mg alloy” , Materials Science and Engineering A, Vol.527, pp.1292-1298, (2010).
[ISA] A. D. Isadarea, B. Aremo, M. O. Adeoyec, O. J. Olawalec, M. D. Shittuc,“Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy” , Materials Research ,Vol.16, pp.190-194.(2013)
[JAI] S. Jain , M.L.C. Lim , J.L. Hudson , J.R. Scully, “Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys:
A general finding”, Corrosion Science, Vol. 59, pp.136-147.(2012)
[JUR] W.Jurczak, “The effect of heat treatment on the structure and corrosion resistance of Al-Zn-Mg alloys”, polish maritime research, Vol. 15, pp.66-71.(208)
[JON] R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano, “Role of Mg in the Stress Corrosion Cracking of an Al-Mg Alloy” ,Metallurgical and Materials Transactions A, Vol. 32A, pp.1699-1711.(2001)
[KAS] K. T. Kashyap, T. Chandrashekar, “Effects and mechanisms of grain refinement in aluminium alloys” , Bulletin of Materials Science, Vol.24 pp.345-353.(2001)
[KEN1] R. Kent, V. Horn, “Aluminum: Properties and Physical Metallurgy and Phase diagrams” , ASM International Metals Park, Ohio, p.290.(1971)
[KEN2] R. Kent, V. Horn, “Aluminum: Properties and Physical Metallurgy and Phase diagrams” , ASM International Metals Park, Ohio, p.203.(1971)
[LEE1] S. L. Lee, S. T. Wu, “Identification of Dispersoids in Al-Mg Alloys Containing Mn” , Metallurgical Transactions A , Vol.18A pp.1353-1357.(1987)
[LEE2] S. L. Lee, S. T. Wu, “Influence of Soaking Treatments on Hot Ductility of AI-4.85 Pct Mg Alloys Containing Mn” , Metallurgical Transactions A , Vol.17A, pp.833-841.(1986)
[LEE3]Shih-Wei Lee, Jien-Wei Yeh, “ Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion” , Materials Science and Engineering A,Vol. 460–461, pp.409-419. (2007)
[LIM] M.L.C. Lim , J.R. Scully , and R.G. Kelly, “Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions” , CORROSION SCIENCE , Vol.69, pp.35-47,(2013).
[LIU] S. D. Liu, X.M. Zhang, M.A. Chen, J.H. You, “Influence of aging on quench sensitivity effect of 7055 aluminum alloy” , Materials Characterization , Vol.59, pp.53-60,(2008).
[MAS]T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, “ Binary Alloy Phase Diagrams ”, ASM International, Ohio, p.130.(1990)
[OGU] I. N. A. Oguocha , O. J. Adigun , S. Yannacopoulos,“Effect of sensitization heat treatment on properties of Al–Mg alloyAA5083-H116” , J Mater Sci ,Vol.43, pp.4208-4214.(2008)
[NOR]A. F. Norman, P. B. Prangnell and R. S. Mcewen, “ The solidification behaviour of dilute aluminium-scandium alloys” , Acta mater, Vol. 46, pp. 5715-5732.(1998)
[PAR]J. K. Park, A. J. Ardell, “Microstructures of the Commercial 7075 Al Alloys in the T651 and T7 Tempers”, Metallurgical Transaction A, Vol.14A, pp.1957-1965.(1983)
[POL] I. Polmear, “Light Alloys: From Traditional Alloys to Nanocrystals”, Baker and Taylor Books, India, p.130.(2005)
[RAD]Tamara Radetica, Miljana Popovica, Endre Romhanjia, “Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment”, Materials Characterization, Vol.65, pp.16-27.(2012)
[ROM] E. Romhanji , M. Popovic , S. Stanojevic , “Precipitation Processes in Al-Mg-(Mn,Cu) Type Alloy Sheets Evaluated Through Electrical Resistivity Variations” ,Metalurgija, Vol.29, pp.43-48.(2010)
[SEA] J.L. Searles, P.I. Gouma, R.G. Buchheit,“Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),”Metallurgical and Materials Transactions A, Vol. 32, pp.2859-2867.(2001)
[SUA] C. E. Suarez “Study of homogenization treatments of cast 5xxx series al-mg-mn alloy modified with zn” , Light Metals , Ohio , p.387, (2012).
[TAN] L. Tan , T.R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083” , Corrosion Science ,Vol.52, pp. 548-554.(2010)
[VAS] A.K. Vasudevan and R.D. doherty, “ Aluminum alloys- contemporary research and applications” , Academic Press ,Boston
, p.84.(1989)
[UNO] K.A. Unocic, P. Kobe, M.J. Mills, G.S. Daehn, “Grain Boundary Precipitate Modification for Improved Intergranular Corrosion Resistance” , Materials Science Forum ,Vol.519, pp.327-332. (2006)
[VEN] T. Venugopal, K. Srinivasa Rao and K. Prasad Rao, “Studies on friction stir welded AA 7075 aluminum alloy” , Transactions of the Indian Institute of Metals ,Vol.57, pp.659-663. (2004)
[VLA] M. Vlach, I. Stulíkova, B. Smola, N. Zaludova, “Characterization of phase development in non-isothermally annealed mould-cast and heat-treated Al–Mn–Sc–Zr alloys ” , Materials Characterization ,Vol. 61, pp.1400-1405. (2010)
[VUE] S. Vuelvas, S. Valdez, J. G. Gonzalez-Rodriguez, “Effect of Mg and Sn Addition on the Corrosion Behavior of an Al-Mn Alloy in 0.5 M H2SO4 ” , International Journal of electrochemical science ,Vol. 7, pp.4171-4181. (2012)
[WEN] Wei Wen, Yumin Zhao, J.G. Morris , “ The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys ” , Materials Science and Engineering A ,Vol. 392, pp.136-144.(2005)
[YAS] Kiryl A. Yasakau , Mikhail L. Zheludkevich ,Sviatlana V. Lamakaa, Mario G.S. Ferreira ,“Role of intermetallic phases in localized corrosion of AA5083” , Electrochimica Acta ,Vol.52, pp.7651–7659.(2007)
[ZHA] Z. Zhao, Y. Meng, and J. Cui “Effect of Mn on microstructures and mechanical properties of Al-Mg-Si- Cu-Cr-V alloy” , China Foundry ,Vol.9, pp.349–355.(2012)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2013-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明