博碩士論文 100323087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.142.197.212
姓名 陳昱樺(Wu-Hua Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波振動輔助等通道彎角擠製之初步研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文旨探討超音波振動輔助等通道彎角擠製(ECAE)之影響,以新設計之軸向超音波沖頭加載於ECAE製程中,分別探討不同的沖頭速度與軸向振幅大小,對ECAE後加工成品之影響,其包含沖頭負載、硬度與晶粒細化程度,並以有限元素軟體Deform 3D 模擬超音波輔助ECAE,分析其等效應變與沖頭負荷之變化。結果顯示超音波軸向振動對於降低成型力、晶粒細化分布、硬度分布以及應變分佈有良好的效應。
摘要(英) This paper investigates the influence of ultrasonic vibration on equal channel angular extrusion (ECAE),by designing a punch with axial ultrasonic vibration in ECAE process,to investigate punch load ,hardness,and gain size of workpiece in different punch speed and amplitude.Furthermore,using FEM software DEFORM 3D to create finite element model with axial ultrasonic vibration in ECAE process, the strain distribution can be more easier to understand through the finite element model. The results reveals that there were good improvements of reduction of forming load,grain refinement distribution, hardness distribution ,and strain distribution by imposing ultrasonic vibration during ECAE process.
關鍵字(中) ★ 超音波
★ 等通道彎角擠製
★ 擠製
關鍵字(英) ★ Ultrasonic Vibration
★ ECAE
★ extrusion
論文目次 摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
1.3 文獻回顧 3
第二章 基本理論 11
2.1 等通道彎角擠製(ECAE)製程介紹與原理 11
2.1.1 ECAE製程介紹 11
2.1.2 ECAE原理 11
2.1.3 ECAE晶粒細化原理 14
2.2 超音波加工原理 15
2.2.1 超音波基本理論 15
2.2.2 超音波降低介面摩擦應力之機制 15
第三章 超音波振動實驗設備與製造 18
3.1 實驗設備 18
3.1.1 100噸油壓機 18
3.1.2 資料擷取系統 18
3.1.3 Load cell測力計 18
3.1.4 雷射位移計 19
3.1.5 MTS810拉伸試驗機 19
3.1.6 APISC小型切割機 19
3.1.7 拋光研磨機 19
3.1.8 光學顯微鏡(OM) 19
3.1.9 維氏硬度計 19
3.2 等通道彎角擠製模具設計 20
3.2.1 模具結構與設計 20
3.2.2 ECAE 母模設計 20
3.2.3 模具製作 20
3.3 超音波沖頭振動設計 20
3.3.1 超音波頻率產生器 22
3.3.2 振動子(換能器) 22
3.3.3 聚能器 23
3.3.4 超音波沖頭 23
3.3.5 振幅量測 24
3.4 實驗方法 24
3.4.1 試片製作 25
3.4.2 模具與機台校正 25
3.4.3 實驗條件 26
3.4.4 實驗步驟 26
3.5實驗量測 27
3.5.1 維氏Vickers硬度計量測 27
3.5.2 光學顯微鏡(OM)量測 27
第四章 實驗結果與討論 29
4.1 拉伸試驗 29
4.1.1 拉伸試驗機與試片規格 29
4.1.2 拉伸試驗步驟 29
4.1.3 拉伸試驗結果 29
4.2 超音波振幅對沖頭負載之影響 30
4.3 沖頭速度對沖頭負載之影響 31
4.4 超音波振幅對硬度分布之影響 31
4.5 沖頭速度對硬度分布之影響 32
4.6 超音波振幅對晶粒細化程度之影響 33
4.7 沖頭速度對晶粒細化程度之影響 34
4.8 超音波振幅對於ECAE試片與沖頭接觸面之影響 34
4.9 有限元素分析 34
4.9.1 前言 34
4.9.2 基本假設 36
4.9.3 DEFORM 之架構與各部份功能之介紹 36
4.9.4摩擦條件 38
4.10 超音波ECAE有限元素模擬與實驗驗證 38
4.10.1 巨觀下幾何形狀 38
4.10.2有限元素模型與實驗值沖頭負載之比較 39
4.10.3 有限元素模型應變分布之驗證 39
4.10.4超音波等通道彎角擠製之有限元素分析 40
第五章 結論 41
參考文獻 43
參考文獻 [1] Prangnell PB, Harris C, Roberts SM. “Finite element modeling of equal channel angular extrusion,”Scripta Mater. 1997;37(7):983–9
[2] Joun MS, Moon HG, Choi IS, Lee MC, Jun BY., “Effect of friction laws on metal forming processes,”Tribol. Int. 2009;42:311–9
[3] Rosochowski, A. and L. Olejnik, 2002, “Numerical and physical modeling of plastic deformation in 2-turn equal channel angular extrusion,” J. Mater. Proc. Technol., 125-126: 309-316.
[4] Ma, A., N. Yoshinori, S. Kazutaka, S. Ichinori and S. Naobumi, 2005, “Characteristics of plastic deformation by rotary-die equal channel angular pressing,” Scripta Materialia, 52: 433-437.
[5] Pasierb, A. and Wojnar, A., “An experimental investigation of deep drawing and drawing processes of thin walled products with utilization of ultrasonic vibrations,” Journal of Materials Processing Technology, Vol. 34, pp. 489-494, 1992.
[6] Tsujina, J., Ueoka, T., Sato, H., Takiguchi, K. and Takahashi, K., “Characteristics of ultrasonic bending of metal plates using a longitudinal vibration die and punch,” IEEE Ultrasonic Symposium, pp.863-866, 1992.
[7] Siegert, K. and Mock, A., “Wire drawing with ultrasonically oscillating dies,” Journal of Materials Processing Technology, Vol. 60 , pp. 657-660, 1996.
[8] Petruzelka, J., Sarmanova, J. and Sarman, A., “The effect of ultrasound on tube drawing,” Journal of Materials Processing Technology, Vol. 60, pp. 661-668, 1996.
[9] Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito, K. and Hatano, H., “An application of ultrasonic vibration to the deep drawing process,” Journal of Materials Processing Technology, Vol.80-81, pp. 406-412, 1998.
[10] Siegert, K., “Influencing the friction in metal forming processes by superimposing ultrasonic waves,” CIRP Annals-Manufacturing Technology, Vol. 50, pp. 195-200, 2001.
[11] Murakawa, M. and Jin, M., “The utility of radially and ultrasonically vibrated dies in the wire drawing process,” Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
[12] Hayashi, M., Jin, M., Thipprakmas, S., Murakawa, M., Hung, J.C., Tsai, Y.C. and Hung, C.H., “Simulation of ultrasonic-vibration drawing using the finite element (FEM),” Journal of Materials
Processing Technology, Vol. 140, pp. 30-35, 2003.
[13] Kumar, V.C. and Hutchings, I.M., “Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration,” Tribology International, Vol. 37, pp. 833-840, 2004.
[14] Hung , J.C. and Hung, C.H., “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy,” Ultrasonics, Vol. 43, pp. 692-698, 2005.
[15] Suh, C.M., Song, G.H., Suh, M.S., Pyoun, Y.S., “Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology,” Materials Science and Engineering: A, Vol. 443, pp. 101-106, 2007.
[16] Ashida, Y. and Aoyama, H., “Press forming using ultrasonic vibration,” Journal of Materials Processing
Technology, Vol. 187-188, pp. 118-122, 2007.
[17] Wang Ting, Wang Dongpo, Liu Gang, Gong Baoming, Song Ningxia, “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing,” Applied Surface Science, Vol.255, pp. 1824-1829, 2008.
[18] Yanxiong Liu, Sergey Suslov, Qingyou Han, Clause Xu, Lin Hua, “Microstructure of the pure copper produced by upsetting with ultrasonic vibration,” Materials Letters, Vol. 67, pp. 52-55, 2012.
[19] A. Rosochowski, L. Olejnik, “Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion,” Journal of Materials Processing Technology, Vol. 125–126, pp. 309-316,2012.
[20] W.J. Kim, J.C. Namgung, J.K. Kim, “Analysis of strain uniformity during multi-pressing in equal channel angular extrusion,” Scripta Materialia, Vol. 53, pp. 293-298, 2005.
[21] Shubo Xu, Guoqun Zhao, Xinwu Ma, Guocheng Ren, “Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials,” Journal of Materials Processing Technology, Vol. 184, pp. 209-216, 2007.
[22] Nagasekhar, A.V., Yip, T.H., Seow, H.P., “Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing,” Journal of Materials Processing Technology, Vol. 192–193, pp.449-452, 2007.
[23] Hong Jiang, Zhiguo Fan, Chaoying Xie, “3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion,” Materials Science and Engineering:A, Vol. 485, pp. 409-414, 2008.
[24] Patil, V., Chakkingal, U., Prasanna Kumar, T.S., “Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation,” Journal of Materials Processing Technology, Vol. 209, pp. 89-95, 2009.
[25] Nagasekhar, A.V., Yoon, S.C., Y. Tick-Hon, Kim, H.S., “An experimental verification of the finite element modeling of equal channel angular pressing,” Computational Materials Science, Vol. 46, pp.347-351, 2009
[26] Djavanroodi, F., Ebrahimi, M.,“Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation,” Materials Science and Engineering: A, Vol. 527, pp. 1230-1235, 2010.
[27] Luri, R., C.J. Luis Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez, J.P. Fuertes, “Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries,” Journal of Materials Processing Technology, Vol. 211, pp. 48-56, 2011.
[28] Si, J.Y., Gao, F., Zhang, J., “Finite Element Analysis of Die Geometry and Process Conditions Effects on Equal Channel Angular Extrusion for β-Titanium Alloy,” Journal of Iron and Steel Research International, Vol. 19, pp. 54-58, 2012.
[29] V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, “Russian Metallurgy”, (Engl. Transl.), Vol.1 (1981), pp.115.
[30] V. M. Segal, USSR Patent No. 575892 (1997).
[31] Y. Iwahashi﹐J. Wang﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐
Scripta Materialia, Vol. 35 (1996), pp.143~146.
[32] A. Shan﹐I. G. Moon﹐H. S. Ko﹐J. W. Park﹐ Scripta Materialia, Vol.41 (1999), pp.353~357.
[33] Y. Wu﹐I. Baker﹐Scripta Materialia, Vol.37 (1997), pp.437~442.
[34] Y.U. Zhu, T.C. Lowe and T.G. Langdon,”Performance and application of nanostructured materials produced by severe plastic deformation”, Scripta Materialia 51 (2004), pp. 825~830.
[35] Designation:E8M-91, Standard Test Methods for Tension Testing of Metallic Materials [Metric], 50-168.
[36] A. Kawalek, ”Forming of Band Curvature in Asymmetrical Rolling Process,”Journal of Materials Processing Technology,155-156(2004) 2033-2038.
[37] Cardoni, A. and Lucas, M., “Enhanced vibration performance of ultrasonic block horns,” Ultrasonic, Vol. 40, pp. 365-369, 2002.
[38] Rosca, I.C. and Chiriacescu, S.T., “Ultrasonic horns optimization,” Physics Procedia, Vol. 3, pp.1033-1040, 2010.
[39] Wang, D.A., Chuang, W.Y., Hsu, K. and Pham, H.T., “Design of a Bézier-profile horn for high displacement amplification ,” Ultrasonic, Vol. 51, pp .148-159, 2011.
[40] 實驗設計法-製程與產品最佳化,葉怡成著,五南圖書公司出版,2005年12月。
[41] 超音波工學理論實務,島川正憲著,復漢出版社出版,1993年1月。
[42] P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, ”Influence of pressing speed on microstructural development in equal-channel angular pressing,” Metall. Mater. Trans., 30A (1999), p. 1989
[43] Fazil O. Sonmez, Ahmet Demir, “Analytical relations between hardness and strain for cold formed parts,” Journal of Materials Processing Technology, Volume 186, Issues 1–3, , Pages 163-1737, May 2007
指導教授 葉維磬(Ching-Wei Yeh) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明