博碩士論文 100624014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.12.161.168
姓名 劉學樺(Hsueh-hua Liu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性
(To evaluate frictional characteristics of basal décollement fault with the fault gouge under different normal stress and velocity of rotary shear tests)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基於薄皮逆衝理論,基底滑脫面與岩楔本身強度控制了加積岩楔之幾何形貌,本研究將探討基底滑脫面之摩擦特性。因深部基底滑脫面之剪動材料取樣不易,本研究乃針對台灣中部基底滑脫面分支斷層-雙冬斷層地表露頭進行斷層泥取樣,以作為基底滑脫面剪動材料之代表試體。利用為現地含水量之重模試體,於不同正向應力、轉速條件下進行旋剪試驗,探討斷層泥於不同岩覆與剪動速度下摩擦特性之變化趨勢與差異,並將其結果推衍至基底滑脫面之摩擦行為。研究結果指出,旋剪速度小於1 m/s之試驗均呈現位移強化;而旋剪速度1 m/s之試驗則呈現位移弱化,當速度越快時其穩態摩擦係數( )將越低,此趨勢代表基底滑脫面之剪力強度將隨剪動速度增加而降低(即速度弱化)。而於10-1與10-2 m/s之速度條件、正向應力介於0.5~2.5 MPa範圍內, 變化不明顯。換言之,於本研究應力範圍內所對應之加積岩楔厚度變化,對基底滑脫面摩擦係數影響有限。另外,根據微觀組構之觀察發現,旋剪速度1 m/s (較接近同震時斷層剪動速度)之試體,其於旋轉端處Y剪切面上方區域,顆粒粒徑大多較小(<0.004 mm),且此一區域發現部分摩擦融熔(partial frictional melting)現象,此現象伴隨著摩擦係數隨位移弱化之情形出現,因此,基底滑脫面於同震時摩擦行為可能與間震時期相當不同。微觀剪切構造觀察結果發現,正向(軸向)應力由0.5 MPa增加至2.5 MPa,R1剪切面、Y剪切面與P葉理之延續性亦隨之增加,此一結果暗示,加積楔厚度可能控制基底滑脫面微觀剪切構造之發育,因剪切構造可能影響孔隙壓力消散過程,故可能間接影響加積岩楔基底滑脫面之強度。
摘要(英) Basal décollement and wedge strength domain the geometry of accretionary wedge based on thin-skin thrust theory. Therefore, we will research the frictional characteristic of décollement fault that to understand the geometry of accretionary wedge. Due to the sampling of décollement fault was hardly, there had not been to research representative specimen for frictional experiments in the past. We use Shuangdong fault gouge to substitute basal décollement material, because Shuangdong fault is the main branch of basal décollement in central Taiwan. To understand the gouge frictional characteristics in different depths and slip velocity, we use remolded gouge sample with different normal stress and velocity to conduct rotatory shear experiments, and in-situ water content used with all tests. And the results can evaluate basal décollement mechanical behavior. Research results indicate that, when the rotating shear velocity is less than 1 m/s of the test, it’s showed slip strengthening. While 1 m/s rotating shear test result shows slip weakening. We also find out that the steady-state friction coefficient( ) will decrease with increasing velocity(velocity weakening), when the velocity of rotating shear is within the range of 10-4~1 m/s. This result representing the basal décollement strength will be reduced as the velocity increases. change slightly in the same velocity(10-1、10-2 m/s), normal stress between 0.5~2.5 MPa. In other words, the variation thickness of the accretionary wedge impact limited frictional coefficient on the basal décollement. In addition, according to the observation of the microstructure, found that rotating shear velocity 1 m/s(closer to the velocity of coseismic) of the specimen, there are almost all extremely fine grained(<0.004 mm) develop above Y-shear(along rotational side). This area has discovered partial frictional melting phenomenon, which accompany with the displacement weakening of frictional coefficient. Therefore, the frictional behavior of basal décollement may be quit different between coseismic and interseismic condition. Microstructure comparisons R1-shear, Y-shear, and P-foliation continuities are mainly controlled by normal stress(from 0.5 MPa increased to 2.5 MPa). It implies that, the thickness of accretionary wedge is possible to control the basal décollement’s development of microstructure. Microstructure may affect the pore pressure dissipation process, so the thickness of the accretionary wedge may indirectly affect the strength of the basal décollement.
關鍵字(中) ★ 低速-高速旋剪試驗
★ 斷層泥
★ 基底滑脫面
★ 加積岩楔
★ 正向應力
關鍵字(英) ★ Low-high rotary shear experiment
★ fault gouge
★ basal décollement
★ accretionary wedge
★ normal stress
論文目次 摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
圖目錄 ix
表目錄 xv
一、 緒論 1
1-1 研究動機與目的 1
1-2 研究流程 3
1-3 論文架構 5
二、 文獻回顧 6
2-1 非線性破壞準則之臨界楔模型 6
2-2 斷層泥摩擦性質 9
2-3 斷層泥之微觀剪切構造 15
三、 研究方法 22
3-1 野外斷層泥取樣 22
3-2 旋剪摩擦試驗 28
3-2-1 高速旋剪試驗儀 30
3-2-2 實驗試體製備方法 31
3-2-3 實驗操作流程 32
3-3 樣本物性試驗、礦物成分分析與微觀剪切構造觀察 36
3-3-1 樣本物性試驗 36
3-3-2 樣本礦物成分分析 37
3-3-3 樣本受剪前後微觀剪切構造觀察 38
四、 研究結果 42
4-1 斷層泥之物性試驗結果 42
4-2 斷層泥之礦物成分分析 44
4-3 旋剪摩擦試驗 46
4-3-1 相同正向(軸向)應力不同速度下之斷層泥試驗結果 48
4-3-2 相同速度不同正向(軸向)應力下之斷層泥試驗結果 50
4-4 微觀剪切構造分析結果 54
4-4-1 旋剪前斷層泥微觀構造 54
4-4-2 不同剪位移之微觀剪切構造發育 58
4-4-3 不同速度以及不同滑移距離下之斷層泥微觀剪切構造 62
4-4-4 不同正向(軸向)應力下之斷層泥微觀剪切構造 74
五、 綜合討論 81
5-1 不同滑移速度之摩擦特性變化以及與微觀剪切構造間之關聯性 82
5-2 不同正向(軸向)應力之摩擦特性變化以及與微觀剪切構造間之關聯性 85
5-3 加積岩楔基底滑脫面強度推估之應用 87
六、 結論與建議 89
6-1 結論 89
6-2 建議 91
參考文獻 92
附錄一 97
附錄二 98
附錄三 101
附錄四 105
附錄五 120
參考文獻 [1]Suppe, J., “Geometry and kinematics of fault-bend folding”, American Journal of Science, Vol. 283, pp. 684-721, 1983.
[2]Yue, L.F., “Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures”, Department of Geosciences, Princeton University, Ph.D. Dissertation, 2007.
[3]Dahlen, F.A., “Critical taper model of fold-and-thrust belts and accretionary wedges”, Annual Review of Earth and Planetary Sciences, Vol. 18, pp. 55-99, 1990.
[4]Tsutsumi, A., and Shimamoto, T., “High-velocity frictional properties of gabbro”, Geophysical Research Letters, Vol. 24, No.6, pp. 699-702, 1997.
[5]Davis, D., Suppe, J., and Dahlen, F.A., “Mechanics of fold-and-thrust belt and accretionary wedges”, Journal of Geophysical Research, Vol. 88, No. B2, pp. 1153-1172, 1983.
[6]Dahlen, F.A., Suppe, J., and Davis, D., “Mechanics of fold-and-thrust belt and accretionary wedges: Cohesive coulomb theory”, Journal of Geophysical Research, Vol. 89, No. B12, pp. 10087-10101, 1984.
[7]楊哲銘,「非線性破壞準則之臨界楔模型」,國立中央大學,碩士論文,2009年。
[8]Hoek, E., Torres, C.T., and Corkum, B., Hoek-Brown Failure Criterion, 2002 Edition, Proceedings of the North American Rock Mechanics Society Meeting, Toronto, 2002.
[9]Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T., “Fault lubrication during earthquakes”, Nature, Vol. 471, pp. 494-498, 2011.
[10]den Hartog, S.A.M., Peach, C.J., Winter, D.A.M.de, Spiers, C.J., and Shimamoto, T., “Frictional properties of megathrust fault gouges at low sliding velocities: New data on effects of normal stress and temperature”, Journal of Structural Geology, Vol. 38, pp. 156-171, 2012.
[11]Shimamoto, T., and Logan J.M., “Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone”, Tectonophysics, Vol. 75, pp. 243-255, 1981.
[12]Dieterich, J.H., “Time-dependent friction and the mechanics of stick-slip”, Pure and Applied Geophysics, Vol. 116, pp. 790-806, 1978.
[13]Dieterich, J.H., “Experimental results and constitutive equations”, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2161-2168, 1979.
[14]Togo, T., Shimamoto, T., Ma, S., and Hirose, T., “High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake”, Earthquake Science, Vol. 24, pp. 267-281, 2011.
[15]Hirose, T., and Shimamoto, T., “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting”, Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005.
[16]Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and Shimamoto, T., “Natural and experimental evidence of melt lubrication of faults during earthquakes”, Science, Vol. 311, pp. 647-649, 2006.
[17]Nielsen, S., Di Toro, G., Hirose, T., and Shimamoto, T., “Frictional melt and seismic slip”, Journal of Geophysical Research, Vol. 113, B01308, doi:10.1029/2007JB005122, 2008.
[18]Sibson, R.H., “Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanism for partial or total stress relief”, Nature, Vol. 243, pp. 66-68, 1973.
[19]Lachenbruch, A.H., “Frictional heating, fluid pressure, and the resistance to fault motion”, Journal of Geophysical Research, Vol. 85, pp. 6097-6112, 1980.
[20]Mase, C.W., and Smith, L., “Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault”, Journal of Geophysical Research, Vol. 92, pp. 6249-6272, 1987.
[21]Wibberley, C.A.J., and Shimamoto, T., “Earthquake slip weakening and asperities explained by thermal pressurization”, Nature, Vol. 436, pp. 689-692, 2005.
[22]Noda, H., and Shimamoto, T., “Thermal pressurization and slip-weakening distance of a fault: an example of the Hanaore fault, Southwest Japan”, Bulletin of the Seismological Society of America, Vol. 95, pp. 1224-1233, 2005.
[23]Rice, J.R., “Heating and weakening of faults during earthquake slip”, Journal of Geophysical Research, Vol. 111, B05311, doi:10.1029/2005JB004006, 2006.
[24]陳宥任,「快速滑動塊體滑動面正向應力與超額移動距離」,國立中央大學,碩士論文,2012年。
[25]Tanikawa, W., and Shimamoto, T., “Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake”, Journal of Geophysical Research, Vol. 114, B01402, doi:10.1029/2008JB005750, 2009.
[26]Higgins, M. W., Cataclastic rocks, U.S. Geol. Survey Prof., 1971.
[27]廖卿妃,「車籠埔斷層斷層岩之變形作用與黏土礦物分析」,國立中央大學,碩士論文,2003年。
[28]Sibson, R.H., “Fault rocks and fault mechanisms”, Geological Society of London, Vol. 133, pp. 191-213, 1977.
[29]Wu, F.T., “Mineralogy and Physical Nature of Clay Gouge”, Pure & Appl. Geophysics, Vol. 116, pp. 655-689, 1978.
[30]Terzaghi K., and Peck, R.B., Soil Mechanics in Engineering Practice, 2nd Edition, John Wiley & Sons, New York, pp. 729, 1967.
[31]Rutter, E.H., Maddock, R.H., Hall, S.H., and White, S.H., “Comparative microstructures of natural and experimentally produced clay bearing fault gouge”, Pure & Appl. Geophysics, Vol. 24, pp. 3-30, 1986.
[32]Logan, J.M., Friedman, M., Higgs, N., Dengo, C., and Shimamoto, T., “Experimental studies of simulated fault gouge and their application to studies of natural fault zone”, Proceedings of Conference VIII: Analysis of actual fault zones in bedrock, Open-File Report-U.S. Geological Survey, pp. 305-343, 1979.
[33]Kitajima, H., Chester, J.S., Chester, F.M., and Shimamoto, T., “High‐speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution”, Journal of Geophysical Research, Vol. 115, B08408, dio:10.1029/2009JB007038, 2010.
[34]Shimamoto, T., and Togo T., “Earthquakes in the lab”, Science, Vol. 338, No. 54, DOI: 10.1126/science.1227085, 2012.
[35]黃鑑水、謝凱旋和陳勉銘,「台灣地質圖:埔里」,經濟部中央地質調查所,2000年。
[36]張徽正、林啟文和盧詩丁,「九二一地震地質調查報告」,經濟部中央地質調查所,2000年。
[37]Tsutsumi, A., Shimamoto, T., “Frictional properties of monzodiorite and gabbro during seismogenic fault motion”, Geological Society of Japan, Vol. 102, pp. 240-248, 1996.
[38]沈建志,「斷層泥力學特性之初步研究」,國立中央大學,碩士論文,1995年。
[39]Johns, W.D., Grim, R.E. and Bradley, W.F., “Quantitative estimations of clay minerals by diffraction methods”, Journal of Sedimentary Petrology, Vol. 24, No. 4, pp. 242-251, 1954.
[40]Boutareaud, S., Calugaru, D.G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., and Shimamoto, T., “Clay-clast aggregates: a new textural evidence for seismic fault sliding?”, Geophysical Research Letters, Vol 35, L05302, doi:10.1029/2007GL032554, 2008.
[41]Boutareaud, S., Boullier, A.M., Andreani, M., Calugaru, D.G., Beck, P., Song, S.R., and Shimamoto, T., “Clay-clast aggregates in gouges: New textural evidence for seismic faulting”, Journal of Geophysical Research, Vol. 115, B02408, doi:10.1029/2008JB006254, 2010.
[42]Ferri, F., Di Toro, G., Hirose, T., and Shimamoto, T., “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol. 22, No. 5, pp. 347-353, 2010.
[43]Kopf, A., and Brown, K.M., “Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts”, Marine Geology, Vol. 202, pp. 193-210, 2003.
[44]Ikari, M.J., Saffer, D.M., and Marone, C., “Frictional and hydrologic properties of clay-rich fault gouge”, Journal of Geophysical Research, Vol. 114, B05409, doi:10.1029/2008JB006089, 2009.
[45]Kuo, L.W., Song, S.R., Yeh, E.C., Chen, H.F., “Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications”, Geophysical Research Letters, Vol. 36, L18306, doi:10.1029/2009GL039269, 2009.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2013-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明