博碩士論文 100624008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.188.215.251
姓名 張承憲(ZHANG,CHENG-XIAN)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 以流線與勢能線網格模擬雙井循環流場之溶質傳輸
(Numerical simulation of solute transport in a dipole flow field using streamline and equipotential line based grids)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙井循環流場追蹤劑試驗常被用來推估現地含水層縱向延散係數,其基本假設為觀測井的濃度穿透曲線不受側向延散影響,可是在實際狀況下當溶質進入雙井循環流場後會同時受到縱向及側向延散的影響,進而兩者同時影響觀測井觀測的濃度穿透曲線,因此縱向延散係數應該無法唯一決定。本研究的目的探討側向延散作用對雙井循環示踪劑試驗濃度穿透曲線之影響,並觀察在何種情況下可忽略側向延散度,唯一決定延散係數。研究中使用FEMWATER模擬雙井循環流場示踪劑溶質傳輸,探討不同井距與縱、側向延散度對濃度穿透曲線的影響,為求準確,利用流線跟勢能線建立網格,其優勢為可降低數值延散上的誤差,讓結果較為精準。其結果顯示各濃度穿透曲線的峰值與峰值之間明顯間距,說明側向延散對濃度穿透曲線有相當顯著的影響,縱向延散不可為一決定。
摘要(英) Dipole flow tracer test have been proposed as an in situ method to determine the longitudinal dispersivity. The embedding assumption is that the breakthrough curve is not affected by transverse dispersion. However the tracer must undergo longitudinal dispersion and transverse dispersion process before it enters the extraction well, thus transverse dispersion certainly influences the BTCs in extraction well. The purpose of this study is to investigate how the transverse dispersion affects the BTCs during a dipole flow tracer test and examine the applicable condition of a dipole flow tracer test in determining the longitudinal dispersivity. In order to promote the accuracy of simulation streamline and equipotential line based grids and in this study FEMWATER is used to simulate the solute transport in a dipole flow fields, and to investigate how the breakthrough curves for different well spacing and transverse dispersivity on BTCs under different well spacing and longitudinal - transverse dispersion coefficient. Simulation results demonstrate that the transverse dispersion exerts significant effects on the BTCs in the extraction well in a large longitudinal dispersivity. The selection of operational parameters including distance, well spacing distances into well has significant influme on the applying condition of a dipole flow tracer test for determining the longitudinal dispersivity. It suggests that longitudinal dispersivity cannot be solely determined by analysis of the BTCs, simply because the BTCs are simultaneously affected by both the longitudinal and transverse dispersions. One should note that the a dipole flow tracer test can only be applied to evaluate the longitudinal dispersivity in an aquifer with a small longitudinal dispersivity.
關鍵字(中) ★ 縱向延散度
★ 側向延散度
★ FEMWATER
★ 濃度穿透曲線
★ 流線
關鍵字(英) ★ longitudinal dispersivity
★ transverse dispersivity
★ FEMWATER
★ breakthrough curves
★ streamline
論文目次 中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii
誌謝…………………………………………………………………iv
目錄…………………………………………………………………v
圖目錄………………………………………………………………vii
表目錄………………………………………………………………viii
符號說明……………………………………………………………ix
一、 前言………………………………………………………1
1-1 研究背景與動機……………………………………………1
1-2 研究目的……………………………………………………3
1-3 研究流程……………………………………………………4
1-4 研究架構……………………………………………………6
二、 文獻回顧……………………………………………………8
2-1 追蹤劑試驗…………………………………………………8
2-2 FEMWATER的應用及網格的應用………………………13
三、 研究方法…………………………………………………14
3-1 FEMWATER介紹…………………………………………14
3-2 FEMWATER控制方程式…………………………………15
3-2-1 水流控制方程式……………………………………15
3-2-2 溶質傳輸控制方程式………………………………19
3-3 流線與勢能線方程式……………………………………22
3-4 概念模式…………………………………………………27
3-5 網格設置…………………………………………………29
四、 結果與討論 ………………………………………………31
五、 結論與建議 ………………………………………………41
5.1 結論…………………………………………………………41
5.2 建議…………………………………………………………42
參考文獻…………………………………………………………43
參考文獻 [1] Cirpka, O.A. and Frind, E.O., “Streamline-oriented grid generation for transport modelling inensional domains including wellsˮ, Advance in Water Resources , vol. 22(7), pp. 697-710, 1999.
[2] Slichter, C.S., Field measurements of the rate of movement of underground water , Unite States Geological Survey Water-Supply and Irrigation Paper 140, 1905.
[3] Ogata, A., Theory of dispersion in a granular medium , Geological Survey Professional Paper , vol. 441-I, 1970.
[4] Ptak, T., Piepenbrink, M. and Martac, E., “Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport-a review of some recent developmentsˮ, Journal of Hydrology, vol. 294(1-3), pp. 122-163, 2004.
[5] Fried, J.J., Groundwater pollution, Amsterdam: Elsevier Scientific 330, 1975
[6] LeBlanc, D.R., Garabedian, S.P.,Hess, K.M., Gelhar, L.W., Quadri, R. D., Stollenwerk, K. G. and Wood, W.W., “Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movementˮ, Water Resources Research, vol. 27(5), pp. 895-910, 1991.
[7] Sutton, D.J., Kabala, Z.J., Schaad, D.E. and Ruud, N.C., “The dipole-flow test with a tracer: a new single-borehole tracer test for aquifer characterization ˮ, Journal of Hydrology, vol. 44, pp. 71-101, 2000.
[8] Burbery, L.F. and Wang, F., “A re-circulating tracer well test method for measuring reaction rates in fast-flowing aquifers: Conceptual and Mathematical modelˮ, Journal of Hydrology, vol. 382(1-4), pp. 163-173, 2010.
[9] Webster, D.S., Proctor, J.F., Marine, I.W., “Two-well tracer test in fractured crystalline rockˮ, Geological Survey Water-Supply, pp. 1-22, 1970.
[10] Molz, F.J., Guven, O., Melville , J.G., Crocker, R.D. and Matteson, K., “Performance, Analysis and simulation of a two-well tracer test at the Mobile Siteˮ, Water Resources Research, vol. 22(7), pp.1031-1037, 1986.
[11] Cunningham, J.A. and Reinhard, M., “Injection-extraction treatment well pairs: an alternative to permeable reactive barriersˮ, Ground Water, vol.40(6), 2002, pp. 599-607, 2002.
[12] Gandhi, R.K., Hopkins, G.D., Goltz , M.N., Gorelick, S.M. and McCarty, P.L., “Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater-1, Dynamics of a recirculating well systemˮ, Water Resources Research, vol. 38(4). 2002.
[13] 詹子輝,「應用補注井群改善海水入侵之可行性研究」, 國立台灣大學,碩士論文,民國87年。
[14] 潘志宏,「三維地下水數值模式應用於林邊溪集水廊道之模
擬」,國立臺灣大學,碩士論文,民國88年。
[15] 黃任賢,「壩體滲漏數值模擬及工程改善之效益評估」,中原大學,碩士論文,民國89年。
[16] 吳孟樺,「泥岩複合襯裡缺陷滲漏之預測模式」,國立高雄應用科技大學,碩士論文,民國92年。
[17] 曾琮愷,「隧道開挖滲流現象之模擬」,中原大學,碩士論文,民國92年。
[18] 鄭正隆,「滲流現象對坡地穩定之影響」,中原大學,碩士論文,民國93年。
[19] Dacosta, J.A. and Bennet, RR., “The pattern of flow in the vicinity of a recharging and discharging pair of wells in an aquifer having areal parallel flowˮ, International Association of Scientific Hydrology , IUGG General Assembly of Helsinki 52, pp. 524–536, 1960.
[20] Frind, E.O. and Matanga, G.B., “The dual formulation of flow contaminant transport models, 1. Review of theory and accuracy aspectsˮ , Water Resources Research, vol.21(1), 159-169, 1985.
[21] Frind, E.O. and Matanga, G.B, “The dual formulation of flow contaminant transport modeling, 2. The Borden aquiferˮ, Water Resources Research, vol. 21(2) , 170-182, 1985.
[22] Miller, R.T. and Voss, C.I., “Finite-difference grid for a doublet well in an anisotropic aquiferˮ, Ground Water, vol. 24(4), pp. 490-496, 1986.
[23] Lin, H.C.J., Richards, D.R., Yeh, G.T., Cheng, J.R., Chen, H.P.,“ FEMWATER: a three-dimensional finite element computer model for simulating density dependent flow and transport in variably saturated media ˮ, Army Engineer Waterways Experiment Station Vicksburg MsCoastal Hydraulics Lab. 1997.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明