參考文獻 |
Altwicker E and Millgan M S, “Formation of dioxins: competing rates between chemical similar precursors and de novo reaction”, Chemosphere, Vol.27, pp.301-307(1993).
Babushok V I and Tsang W, “Gas-phase mechanism for dioxin formation”, Chemosphere, Vol.51, pp1023-1029(2003).
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H and Sheppard E W, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, American Chemical Society, Vol.114, pp.10834-10843(1992).
Beeckman J W and Hegedus L L, “Design of monolith catalysts for power NOx emission control”, Industrial & Engineering Chemistry Research, Vol.30, pp.969-978(1991).
Beer J M and Martin G B, “Application of advanced technology for NO control: alternate fuels and fluidized bed coal combustion,” AIChE Symposium Series, Vol.74(175), pp.93-114(1978).
Belmabkhout Y, Serna-Guerrero R and Sayari A, “Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: Pure CO2 adsorption”, Chemical Engineering Science, Vol.64, pp.3721-3728(2009).
Bhattacharyya S, Lelong G and Saboungi M-L, “Recent progress in the synthesis and selected applications of MCM-41: a short review”, Experimental Nanoscience, Vol.1, pp.375-395(2006).
Bonte J L, Fritsky K J, Plinke M A and Wilken M, “Catalytic destruction of PCDD/F in a fabric filter: Experience at a municipal waste incinerator in Belgium”, Waste Management, Vol.22, pp.421-426(2002).
Bosch H and Janssen F, “De-NOx catalyst review”, Catalyst Today, Vol.2, pp.369-532(1988).
Boyano A, Lombardo N, G´alvez M E, L´azaro M J and Moliner R, “Vanadium-loaded carbon-based monoliths for the on-board NO reduction: Experimental study of operating conditions”, Chemical Engineering Journal, Vol.144, pp.343-351(2008).
Bramer E A and M Valk, “Nitrous oxide and nitric oxide emissions by fluidized bed combustion”, Proceedings of International Conference on Fluidized Bed Combustion 11th, pp.701-707(1991).
Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P and Pan W P, “Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal”, Environmental science & technology, Vol.42, pp.256-261(2007).
Chang S H, Yeh J W, Chein H M, Hsu L Y, Chi K H and Chang M B, “PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon”, Environmental Science and Technology, Vol.42, pp.572-5733(2008).
Chen C Y, Li H X and Davis M E, “Studies on mesoporous materials: I. Synthesis and characterization of MCM-41”, Microporous Materials, Vol.2, pp. 17-26(1993).
Chen C Y, Burkett S L, Li H X and Davis M E, “Studies on mesoporous materials II. Synthesis mechanism of MCM-41”, Microporous Materials, Vol.2, pp. 27-34(1993).
Chen L, Li J, Ge M and Zhu R, “Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia”, Catalysis Today, Vol.356, pp.77-83(2010).
Everaert K and Baeyens J, “Correlation of PCDD/F emissions with operating parameters of municipal solid waste incinerators”, Journal of Air & Waste Management Association, Vol.51, pp.718-224(2001).
Fenimore C P and J Moore, “Quenched carbon monoxide in fuel-lean flame gas”, Combustion and Flame, Vol.22, pp.343-351(1974).
Froese K L and Hutzinger O, ”Polychlorinated benzene, phenol, dibenzo-P-dioxin, and dibenzofuran in heterogeneous combustion reaction of acetylene”, Environmental Science and Technology, Vol.30, pp.998-1008(1996).
Furusawa T, Honda T, Takano J and Kunii D, “Abatement of nitric oxide emission in fluidized bed combustion of coal”, Chemical Engineering of Japan 11(3), pp.377-383(1978).
Goel S, Zhang B and Sarofim A F, “NO and N2O formation during char combustion: Is it HCN or surface attached nitrogen?”, Combustion and Flame 104, pp.213-217(1996).
Gonzalez F, Pesquera C, Perdigon A and Blanco C, “Synthesis, characterization and catalytic performance of Al-MCM-41 mesoporous materials”, Applied Surface Science, Vol.255, pp.7825-7830(2009).
Guliants V V, “Structure-reactivity relationships in oxidation of C4 hydrocarbons on supported vanadia catalysts”, Catalysis Today, Vol.51, pp.255-268(1999).
Hall B, Schager P and Lindurvist O, “Chemical reactions of mercury in combustion flue gases”, Water, Air, and Soil Pollution, Vol.56, pp.15-20(1991).
Ide Y, Kashiwabara K, Okada S, Mori T and Hara M, “Catalytic decomposition of dioxin from MSW incinerator flue gas”, Chemosphere, Vol.32, pp.189-198(1996).
Jones J and Ross J R H, “The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases”, Catalysis Today, Vol.35, pp. 97-105(1997).
Kamata H, Ueno Shun-ichiro, Naito T, Yamaguchi A and Ito S, “Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst”, Catalysis Communications, pp.2441–2444(2008).
Kellie S, Duan Y, Cao Y, Chu P, Mehta A, Carty R, Liu K, Pan W P and Riley J T, “Mercury emissions from a 100 MW wall fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method”, Fuel Processing Technology, Vol.85, pp.487-499(2004).
Kim D W, Kim M H and Ham S W, “An on-line infrared spectroscopic system with a modified multipath white cell for direct measurements of N2O from NH3-SCR reaction”, Korean Journal of Chemical Engineering, Vol.27(6), pp.1730-1737(2010).
Kinoshita K and Kim K, “Carbon: Electrochemical and physicochemical properties,” John Wiley and Sons(1987).
Ko C H and Raoo R, “Imaging the channels in mesoporous molecular sieves with platinum”, Journal of the Chemical Society, Chemical Comunications, Vol.21, pp.2467-2468(1996).
Koyano K A and Tatsumi T, “Synthesis of titanium-containing MCM-41”, Microporous Materials, Vol.10, pp.259-271(1997).
Kramlich J C, Cole J A, McCarthy J M and Lanier W S, “Mechanisms of nitrous oxide formation in coal flames”, Combustion and Flame, Vol.77, pp.375-384(1989).
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C and Beck J S, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, Vol.359, pp.710-712(1992).
Krishnamoorthy S, Baker J P and Amiridis M D, “Catalytic oxidation of 1,2-dichlororbenzene over V2O5/TiO2-based catalysts”, Catalysis Today, Vol.40, pp. 39-46(1998).
Kucherov A V, Shigapov A N and Ivanov A V, “Distribution and properties of catalytically active Cu2+-sites on a mesoporous MCM-41 silicate modified by Al, Zr, W, B, or P ions”, Catalysis Today, Vol.110, pp.330-338(2005).
Lange N A, “Handbook of chemistry, McGraw–Hill,” New York, pp. 288-290(1976).
Lee C W, Srivastava R K, Ghorishi S B, Karwowski J, Hastings T W and Hirschi J C, “Pilot scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases”, Journal of the Air & Waste Management Association, Vol.56, pp.643-649(2006).
Lee Y S, Surjadi D and Rathman J F, “Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates”, Langmuir, Vol.12, pp.6202-6210(1996).
Li Q, Hou X, Yang H, Ma Z, Zhenga J, Liua F, Zhang X and Yuan Z, “Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites”, Journal of Molecular Catalysis A: Chemical,Vol.356, pp.121-127(2012).
Li Z and Gao L, “Synthesis and characterization of MCM-41 decorated with CuO particles”, Journal of the Chinese Chemical Society, Vol. 64, pp.223-228(2003).
Licate A, Balles E and Schuttetnhelm W, “Mercury control alternative for coal-fired power plants”, 10th Annual NAWTEC Conference, Orlando, USA (2002).
Liljelind P, Unsworth J, Maaskant O and Marklund S, “Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, Vol.42, pp.615-623(2001).
Liu Y, Wang Y, Wang H and Wu Z, “Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol–gel method”, Catalysis Communications, pp.1291-1294(2011).
Lohuis J A O, Tromp P J J and Moulijn J A, “Parametric study of N2O formation in coal combustion”, Fuel 71, pp.9-14(1992).
Lutter R and Irwin E, “Mercury in the environment: A volatile problem”, Environment, Vol.44, pp.24-40(2002).
Ma H, Baino F, Fiorilli S, Brovarone C V and Onida B, “Al-MCM-41 inside a glass–ceramic scaffold: A meso–macroporous system for acid catalysis”, Journal of the European Ceramic Society, pp.1535-1543(2013).
Martin T, Galarneau A, Di Renzo F, Brunel D, Fajula F, Heinisch S, Cretier G and Rocca J.-L, “Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC”, Chemistry of Materials, Vol.16, PP.1725-1731(2004).
Mckay G, “Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review”, Chemical Engineering Journal, Vol.86, pp.343-368(2002).
Milligan M S and Altwicker E, “The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxin and dibenzofurans and low-temperature carbon gasification in fly ash”, Environmental Science and Technology, Vol.27, pp.1595-1601(1993).
Miller J A and Bowman C T, “Mechanism and modeling of nitrogen chemistry in combustion”, Progress Energy and Combustion Science, Vol.15, pp.287-338(1989).
Ogawa H, Orita N, Horaguchi M, Suzuki T, Okada M and Yasuda S, “Dioxin reduction by sulfur component addition”, Chemosphere, Vol.32, pp.151-157(1996).
Okumura M, Akita T, Haruta M, Wang X, Kajikawa O and Okada O, “Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin”, Applied Catalysis B: Environmental, Vol.41, pp. 43-52(2003).
Qi F, Chu W and Xu B, “Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate”, Applied Catalysis B: Environmental, pp.324-332(2013).
Sakurai T and Weber R, “Laboratory test of SCR catalysts regarding the destruction efficiency towards aromatic and chlorinated aromatic hydrocarbons”, Organohalogen Compound, Vol.36, pp.103-108(1998).
Sayari A, “Catalysis by crystalline mesoporous molecular sieves”, Chemistry of Materials, Vol.8, pp.1840-1852(1996).
Selvaraj M, Pandurangan A, Seshadri K S, Sinha P K and Lal K B,“Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al”, Applied Catalysis A-General, Vol.242, pp.347-364(2002).
Shaw J T, “Emissions of nitrogen oxides in fluidized-bed combustion and applications”, Applied Science Publishers, London and New York, Chap. 6, pp.227-260(1983).
Shaub W M and Tsang W, “Dioxin formation in incinerators”, Environmental Science and Technology, Vol.17, pp.721-730(1983).
Shikada T, Fujimoto K, Tominaga H, Kanekoand S and Kubo Y, “Reduction of nitric oxide with vanadium oxide catalysts supported on homogeneously precipitated silica-titania”, Industrial & Engineering Chemistry Product Research and Development, Vol.20, pp.91-95(1981).
Shindo T, Kudo H, Kitabayashi S and Ozawa S, “Applicability of MCM-41 as column packing in HPLC for the evaluation of aluminum species in partially neutralized aluminum solutions”, Microporous and Mesoporous Materials, Vol.63, pp.97-104(2003).
Soler-Illia G J de A A, Sanchez C, Lebeau B and Patarin J, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures”, Chemical Review, Vol.102, pp.4093-4138(2002).
Stieglitz L and Vogg H, “On formation conditions of PCDD PCDF in fly-ash from municipal waste incinerators”, Chemosphere, Vol.16, pp.1917-1922(1987).
Swain E B, “Mercury: source and environment fate”, Presentation at the Mercury Contamination Reduction Initiative Workshop, St. Paul, Minnesota, (1997).
Vidya K, Dapurkar S E, Selvam P, Badamali S K and Gupta N M, “The entrapment of UO2+2 in mesoporous MCM-41 and MCM-48 molecular sieves”, Microporous and Mesoporous Materials, Vol.50, pp.173–179(2001).
Vogg H, Metzger M and Stieglitz L, “Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration”, Waste Management and Research, Vol.5, pp.285-294(1987).
Wachs I E and Weckhuysen B M, “Structure and reactivity of surface vanadium oxide species in oxide supports”, Applied Catalysis A: General, Vol.157, pp.67-90(1997)
Wauthoz P, Ruwet M, Machej T and Grange P, “Influence of preparation method on the V2O5/TiO2/SiO2 catalysts in selective catalysts reduction of nitric oxide with Ammonia”, Applied Catalysis, Vol.69, pp.149-167(1991).
Weber R, Sakurai T and Hagenmaier H, “Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts”, Applied Catalysis B: Environmental, Vol.20, pp.249-256(1999).
Wu C-G and Bein T, “Conducting polyaniline filaments in a mesoporous channel host”, Science, Vol.264, pp.1757-1759(1994).
Wu C-G and Bein T, “Polyaniline wires in oxidant-containing mesoporous channel hosts”, Chemistry of Materials, Vol.6, pp.1109-1112(1994).
Xu J Q, Chu W and Luo S Z, “Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability”, Journal of Molecular Catalysis A-Chemical, Vol.256, pp.48-56(2006).
Xu X, Song C, Miller B G and Scaroni A W, “Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41”, Industrial & Engineering Chemistry Research, Vol.44, pp.8113-8119(2005).
Zhang X, Li X, Wu J, Yang R and Zhang Z, “Selective catalytic reduction of NO by ammonia on V2O5/TiO2 catalyst prepared by sol–gel method”, Catalysis Letters, pp.235–238(2009).
Zhenping Z C, Zhenyu L, Shoujun L, Hongxian N, Tiandon H and Tao L, “NO reduction with NH3 over an actived carbon-supported copper oxide catalysts at low temperature”, Applied Catalysis B: Environmental,Vol.26, pp.25-35(2000).
王奕凱、邱宏明、李秉傑,非均勻系催化原理與應用,渤海堂文化事業有限公司,1988。
李宗穎,中孔洞金屬氧化物之合成研究,碩士論文,國立成功大學環境工程學研究所,台南市,2006。
林立桓,二氧化鈦修飾之含鉻鈦MCM-41分子篩之製備、結構特性與催化性質,碩士論文,國立中央大學化學研究所,中壢市,2003。
林亮毅,以Ti-MCM-41與V-Ti-MCM-41分子篩光觸媒同時處理VOCs及NOx之研究,碩士論文,國立交通大學環境工程研究所,新竹市,2008。
吳榮宗,工業觸媒概論,國興出版社,1989。
張君正、張木彬,氮氧化物生成機制與控制技術之探討,工業污染防治,第50期,1994。
劉鎮宗,土壤中有毒重金屬的清道夫,環境工程會刊,第七卷,第一期,1995。
劉瑾瑜,以中孔徑矽分子篩作為氣相PAHs吸附劑之探討,碩士論文,國立中央大學化學研究所,中壢市,2007。
楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工所碩士論文,2000。
傅正豪,活性碳擔體觸媒對酸性氣體之研究,碩士論文,國立中興大學環工所,2003。
賴正昕,劉國棟,黃自立,選擇性觸媒還原法排煙脫硝系統控制實務,工業污染防治,第57期,1996。 |