博碩士論文 100356015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.118.146.223
姓名 何宜倫(yilun.he)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 半導體及LED廢切削油泥再利用之可行性研究
(Study on the reuse feasibility for waste oil sludge of cutting fluid in semi-conductor industry and light-emitting diode industry)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來台灣積極發展半導體、發光二極體等高科技產業,更以成為綠色矽島為自我期許之目標,然而隨著這些產業蓬勃發展、產能逐漸擴大的同時,相對應的其所產生的事業廢棄物也逐年增加,因此在資源有限且面臨資源枯竭的今天,如何有效的將廢棄物資源化將是未來重要的研究課題。本研究之目的主要針對半導體與LED產業中切割程序所產生廢油泥進行再利用研究,因廢油泥成分類似自然界沸石成分,且具有高表面積等特性,故將回收廢油泥改質探討其應用於處理一般含重金屬廢水之可行性及有效性。
本實驗含經改質的吸附劑共十二種,其中以LED高溫鍛燒250℃及LED廢油泥經500°C高溫鍛燒與酸、鹼改質之吸附劑成效最佳,尤其是LED廢油泥經500℃高溫鍛燒與酸、鹼改質之吸附劑,其對鉛離子飽和吸附量已達91.322mg/L,與一般活性碳對銅離子飽和吸附能力相差無幾。各種吸附劑明顯對鉛、銅、鎳三種金屬離子吸附效果不同,總概而論其吸附效果由高至低分別是鉛離子›鎳離子›銅離子,但針對不同金屬離子不同吸附劑的吸附效果仍些許不同,例如LED油泥改質吸附劑中對鉛離子吸附效果最佳為250℃高溫鍛燒油泥,而對鎳離子吸附效果最佳卻是500℃高溫鍛燒油泥。由此可知,不同油泥因鍛燒溫度不同會造成表面化性與官能基的不同,而對金屬離子產生不同吸附能力。本研究發現,油泥吸附效果主要控制變因除了時間以外,主要為溶液pH值的控制,經實驗結果得知油泥吸附金屬反應幾乎是溶液pH值超過3才開始,而且越接近中性,吸附效果越佳。
摘要(英) In recent years, Taiwan has progressive development in semiconductor and light-emitting diodes, and other high-tech industries. and However, at the same time, as these industries are booming, the gradual expansion of product energy resources generates the corresponding product waste year by year. Today, the face with limited resources and resource depletion will be the important research topics and in further how effectively to use the waste as the energy resources. This study focused on the reuse of waste oil sludge, which was generated by semiconductor and LED industry in the cutting process produced the mixture of waste oil and to explore the feasibility and effectiveness in recycling the reformed waste oil as adsorbents to treat the contaminated heavy metal-wastewater. The waste oil is similar to the natural zeolite component.
This experiment deals with the twelve modified adsorbents. The best adsorbents are LED obtained at calcination temperature 250 ℃ and sludge oil with acid at high calcination temperature 500 ℃. Also among all, alkali modified adsorbents are the best. Especially, for LED sludge oil with acid at high calcination temperature (500 ℃) and alkali modified adsorbents, the lead adsorption capacity reached 91.322 mg / L, and this is similar to the adsorption capacity of activated carbon. The various adsorbents have obviously different adsorption capacities for the metal ions (lead, copper and nickel) and their adsorption activities are in the following order; lead > nickel >copper. However, the different modified adsorbents have different activities for different metal ions. For instance, the modified LED sludge-adsorbent has the best adsorption for lead ion in the sludge with the high calcination temperature at 250 ℃. The sludge with the high calcination temperature at 500 ℃ has optimal adsorption effect for the nickel ion. Due to the different calcination temperatures, the different sludges have the different surface chemistry and functional groups and thus resulting in different adsorption capacities for different metal ions. The experimental results indicate that the main control variable for the sludge adsorption is not only the time, but also the pH value of the solution. The experimental results show that metal adsorption reaction in sludge almost starts when pH of the solution is higher than 3 and closer to the neutral pH, the adsorption capacity is enhanced.
關鍵字(中) ★ 半導體油泥
★ LED油泥
★ 金屬離子
★ 切削(液)油
★ 吸附劑
關鍵字(英) ★ Waste oil sludge
★ adsorbents
★ modification
★ pH
★ metal ions
論文目次 目 錄……………………………………………………………………............. I
圖目錄……………………………………………………………………............. V
表目錄……………………………………………………………………............. VIII

第一章 前言…………………………………………………………….................. 1

1-1 研究緣起…………………………………………………………… 1
1-2 研究目的…………………………………………………………... 1
第二章 文獻回顧………………………………………………………………... 3

2-1 半導體產業…………………………………….………….............. 3
2-1-1 半導體產業概述…………………….……………………. 3
2-1-2 半導體產業現況…………………………............................. 7
2-1-3 半導體未來的展望…………………………......................... 8
2-2 LED……………………………………………............................... 9
2-2-1 LED概述………………………………………………….. 9
2-2-2 LED產業現況…………………………………………….. 12
2-2-3 LED產業未來發展……………………………………….. 13
2-3 切削油……………………………………………………………... 14
2-4 碳化矽……………………………………………………………... 15
2-5 氧化鋁……………………………………………………………….. 17
2-5-1 活性氧化鋁……………………………………………….. 20
2-6 廢切削液…………………………………………………………... 21
2-6-1 廢切削液簡述…………………………………………….. 21
2-6-2 廢切削油(液)回收方法…………………………………... 22
第三章 研究方法……………………………………………………………….. 26

3-1 研究流程…………………….……. …………………….……….. 26
3-2 實驗設備…………………………………………………….………. 29
3-3 實驗材料……………………………………………….………….. 33
3-4 實驗方法….……………….………….….……………….…………. 35
3-4-1 半導體、LED切削液油泥成分分析實驗……….…………. 35
3-4-2 半導體切削液廢油泥改質實驗……………………………. 36
3-4-3 LED切削液廢油泥改質實驗……………………………… 37
3-4-4 重金屬吸附實驗……………………………………………. 39
第四章 結果與討論…………………………………………………………....... 40

4-1 半導體廢切削油泥基本性質………….............................................. 40
4-1-1 成分分析………………..………..……………………….. 40
4-1-1-1 光螢光分析(X-RF)…………..…………………… 40
4-1-1-2 感應耦合電漿原子發射光譜法(ICP/OES)……. 41
4-1-1-3 X光繞射分析(X-RD)…………………………... 42
4-1-2 表面形態觀察………………………….…………………… 43
4-1-2-1 EMS………………………..…………………… 43
4-1-2-2 SEM-EDS……………..……..…………………… 45
4-1-3 表面特性分析………………………..…………………… 46
4-1-4 氮氣等溫吸/脫附曲線………………………………… 47
4-2 LED廢切削油泥基本性質…….……............................................. 48
4-2-1 成分分析………………..……………..…………………… 48
4-2-1-1 光螢光分析(X-RF)…………..…………………… 49
4-2-1-2 感應耦合電漿原子發射光譜法(ICP/OES..……... 50
4-2-1-3 X光繞射分析(X-RD)…………………………... 50
4-2-2 表面形態觀察………………………..…………………… 52
4-2-3 表面特性分析…………………………….………………… 55
4-3 改質後廢切削油泥特性分析…………………………..................... 56
4-3-1 不同鍛燒溫度對半導體油泥表面形態之觀察…………… 58
4-3-2 半導體油泥之SEM-EDS…………...……..………………. 65
4-3-3 半導體油泥之表面特性分析..…………………………… 67
4-3-4 半導體油泥之氮氣等溫吸/脫附曲線………………..…... 68
4-3-5 不同鍛燒溫度對LED油泥表面形態之觀察……................ 69
4-3-6 LED油泥之表面特性分析…………..…………………… 74
4-3-7 LED油泥之氮氣等溫吸/脫附曲線…………………….…... 74
4-4 重金屬廢水吸附試驗-鉛…….................……......…………………. 76
4-4-1 半導體廢油泥鉛廢水吸附試驗………………………….. 76
4-4-1-1 pH值影響…………………..…………………… 76
4-4-1-2 等溫吸附模式………..……..…………………… 77
4-4-1-3 鉛金屬吸附試驗……………………………….. 79
4-4-2 LED廢油泥對鉛溶液吸附試驗……...…………………….. 80
4-4-2-1 pH值影響………..…………..…………………… 80
4-4-2-2 等溫吸附模式…………....……..……………… 80
4-4-2-3 鉛金屬吸附試驗…………………………………. 82
4-5 重金屬廢水吸附試驗-銅……………….…….....................……...... 83
4-5-1 半導體廢油泥銅廢水吸附試驗……………………………. 83
4-5-1-1 pH值影響…………………..…………………… 83
4-5-1-2 等溫吸附模式………...……..…………………… 84
4-5-1-3 銅金屬等溫動力吸附試驗………………………. 85
4-5-2 LED廢油泥對銅溶液吸附試驗………...………………….. 86
4-5-2-1 pH值影響…………..………..…………………… 86
4-5-2-2 等溫吸附模式…………………..……..………… 86
4-5-2-3 銅金屬等溫動力吸附試驗…………..………….. 88
4-6 重金屬廢水吸附試驗-鎳……………….…….....................……...... 89
4-6-1 半導體廢油泥鎳廢水吸附試驗……………………………. 89
4-6-1-1 pH值影響…………………..…………………… 89
4-6-1-2 等溫吸附模式………...……..…………………… 89
4-6-1-3 鎳金屬等溫動力吸附試驗………………………. 90
4-6-2 LED廢油泥對鎳溶液吸附試驗………...………………….. 92
4-6-2-1 pH值影響…………..………..…………………… 92
4-6-2-2 等溫吸附模式…………………..……..………… 93
4-6-2-3 鎳金屬等溫動力吸附試驗…………..………….. 94
第五章 結論與建議.…………………………………………………………...... 95

5-1 結論………………………………………………………………... 95
5-2 建議………………………………………………………………... 96
參考文獻…………………………………………………………………………… 97
圖 目 錄
目次 頁次
圖2-1 半導體製程流程圖……………………………………………………… 5
圖2-1 半導體產品分類………………………………….………………….….. 6
圖2-5 拜耳法…………………………………………………………………… 18
圖3-6 廢切削油(液)回收技術流程圖…………….…………………………… 23
圖3-1 半導體廢切削液油泥研究架構圖..……………………..……………… 27
圖3-2 LED廢切削液油泥研究架構圖……………………………………..…. 28
圖3-3 半導體、LED切削液油泥成分分析實驗……………………………… 35
圖3-4 半導體切削液廢油泥改質實驗流程圖………………………………… 36
圖3-5 LED切削液廢油泥改質實驗流程圖…………………………………... 37
圖3-6 實驗流程圖……………………………………………………………… 39
圖4-1 X-RF半導體油泥元素含量…………………………………………….. 41
圖4-2 半導體油泥XRD之晶相圖譜…………………………….………..….. 43
圖4-3 Scanning electorn micrograpHs of 半導體廢油泥at 5K………………. 44
圖4-4 Scanning electorn micrograpHs of 半導體廢油泥at 10K…………....... 44
圖4-6 Scanning electorn micrograpHs of 半導體廢油泥at 80K…………....... 45
圖4-6 半導體廢油泥SEM-EDS………………………………….…………… 46
圖4-7 BET等溫吸附圖.............................................……………………..…… 47
圖4-8 半導體廢油泥之氮氣吸脫付曲線………………………………..…….. 48
圖4-9 X-RF LED油泥元素含量分析圖……………………………………… 49
圖4-10 LED油泥XRD之晶相圖譜…………………………….………..……. 51
圖4-11 Scanning electorn micrograpHs of LED廢油泥at 5K…………………. 52
圖4-12 Scanning electorn micrograpHs of LED廢油泥at 10K…………..…….. 53
圖4-13 Scanning electorn micrograpHs of LED廢油泥at 80K……………........ 53
圖4-14 LED廢油泥SEM-EDS……………......................................................... 54
圖4-15 LED油泥之氮氣等溫吸脫付曲線……………....................................... 56
圖4-16 不同鍛燒溫度半導體廢油泥外觀……………........................................ 59
圖4-17 Scanning electorn micrograpHs of不同鍛燒溫度半導體廢油泥at 5K… 60
圖4-18 Scanning electorn micrograpHs of不同鍛燒溫度半導體廢油泥at 10K. 61
圖4-19 Scanning electorn micrograpHs of不同鍛燒溫度半導體廢油泥at 20K. 62
圖4-20 Scanning electorn micrograpHs of不同鍛燒溫度半導體廢油泥at 50K. 62
圖4-21 Scanning electorn micrograpHs of不同鍛燒溫度半導體廢油泥at 80K. 64
圖4-22 250℃LED廢油泥SEM-EDS……………....……………........................ 65
圖4-23 500℃LED廢油泥SEM-EDS……………....……………....................... 66
圖4-24 850℃LED廢油泥SEM-EDS……………....……………....................... 66
圖4-25 半導體廢油泥之氮氣吸脫付曲線……………........................................ 68
圖4-26 不同鍛燒溫度LED油泥外觀…………….............................................. 69
圖4-27 Scanning electorn micrograpHs of 不同鍛燒溫度LED油泥at5K…… 70
圖4-28 Scanning electorn micrograpHs of 不同鍛燒溫度LED油泥at10K…. 71
圖4-29 Scanning electorn micrograpHs of 不同鍛燒溫度LED油泥at50K…. 72
圖4-30 Scanning electorn micrograpHs of 不同鍛燒溫度LED油泥at80K…. 73
圖4-31 LED油泥之氮氣吸脫付曲線…………….............................................. 75
圖4-32 不同吸附劑於不同PH值下對鉛的吸附效果…………….................... 76
圖4-33 改質不同半導體油泥吸附劑於鉛吸附等溫圖……………................... 77
圖4-34 鍛燒溫度250℃半導體油泥吸附劑於鉛吸附能力……………............ 78
圖4-35 不同鍛燒溫度LED油泥吸附劑於不同PH值下對鉛的去除率……… 80
圖4-36 改質不同LED油泥吸附劑於鉛吸附等溫圖……………...................... 81
圖4-37 鍛燒溫度500℃加酸、鹼改LED油泥吸附劑於鉛吸附能力………… 82
圖4-38 不同吸附劑於不同PH值下對銅的吸附效果……………..................... 83
圖4-39 改質不同半導體油泥吸附劑於銅吸附等溫圖…………….................... 84
圖4-40 鍛燒溫度850℃半導體油泥吸附劑於銅吸附能力……………............. 85
圖4-41 不同改質方式LED油泥吸附劑於不同PH值下對銅的去除率……… 86
圖4-42 改質不同LED油泥吸附劑於銅吸附等溫圖……………....…………. 87
圖4-43 鍛燒溫度500℃加酸、鹼改LED油泥吸附劑於銅吸附能力………… 88
圖4-44 不同吸附劑於不同PH值下對鎳的吸附效果……………..................... 89
圖4-45 改質不同半導體油泥吸附劑於鎳吸附等溫圖…………….................... 90
圖4-46 鍛燒溫度250℃半導體油泥吸附劑於鎳吸附能力……………............. 91
圖4-47 不同鍛燒溫度LED油泥吸附劑於不同PH值下對鎳的去除率………. 92
圖4-48 改質不同LED油泥吸附劑於鎳吸附等溫圖……………....…………. 93
圖4-49 鍛燒溫度500℃加酸、鹼改LED油泥吸附劑於鉛吸附能力………… 94
表 目 錄
目次 頁次
表2-1 LED上中下游產業及其應用…………………………………………… 10
表2-2 各種氧化鋁晶型參數……………………………………………………. 11
表2-3 活性氧化鋁製備方式……………………………………………………. 19
表2-4 廢切削油(液)回收方法…………………….…………………………….. 21
表4-1 X-RD半導體油元素含量………………………………………………... 24
表4-2 ICP元素成分分析……………………………………………………….. 41
表4-3 SEM-EDS元素重量百分比分析………………………………………… 42
表4-4 半導體廢油泥基本特性…………………………………………………. 46
表4-6 X-RD LED油元素含量…………………………………………………. 47
表4-6 ICP元素成分分析……………………………………………………….. 50
表4-7 SEM-EDS元素重量百分比分析………………………………………… 50
表4-8 LED廢油泥基本特性……………………………………………………. 54
表4-9 SEM-EDS半導體油泥元素重量百分比分析…………………………… 55
表4-10 半導體廢油泥基本特性…………………………………………………. 67
表4-11 LED廢油泥基本特性……………………………………………………. 74
表4-12 Langmuir isothern 吸附參數……………………………………………. 78
表4-12 Langmuir isothern 吸附參數……………………………………………. 78
表4-13 Langmuir isothern 吸附參數………………………………………….… 81
表4-14 Langmuir isothern 吸附參數………………………………………….… 84
表4-15 Langmuir isothern 吸附參數………………………………………….… 87
表4-16 Langmuir isothern 吸附參數………………………………………….… 90
表4-17 Langmuir isothern 吸附參數………………………………………….… 93
參考文獻 1 林明獻,矽晶圓半導體材料技術,2000.3。
2 經濟部工業局,矽晶圓製造業資源化應用技術手
冊,P11~P13, ,2007.8。
3 環保署,行業製程減廢及污染防制技術-半導體業介紹,
P1~P32,環保技術輔導計畫,2010.3
4. 簡育德,台灣推動照明國際標準的策略與現況 工業技術
研究院,2012.3。
5. 經濟部投資事業處,LED產業分析及投資機會,1998.3。
6. 董佩真,LED未來之綠光,貿易雜誌 2010年七月號。
7. 楊曉芳,LED應用照明占比首度居冠,工商時報,2013.03。
8. 行政院經建會,啟動LED節能照明 發展綠能產業 帶動
綠色商機,新聞稿,2010.7。
9 魏新陽,切削液發展現況與未來發展趨勢,中國機械與金屬,
2009.11。
10 Tadashi Nezu, 低價化擴大應用SiC普及化,NIKKEI
ELECTRONICS TAIWAN EDITION,2009.6。
11 劉旭東,膜法回收高粘度硅切的研究,大連理工大學碩士論
文,2009.06
12 刑鵬飛,單晶硅與多晶硅廢割漿料的回收,材料與冶金學報,
第九卷第二期,2010.6。
13 畢詩文,拜耳法生產氧化鋁,冶金工業出版社,2007.11
14 台灣半導體產業協會(TSIA),2013Q1台灣IC產業營運成果出爐,
新聞稿,102.5
15 宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學 碩
士論文 ,2003.7。
16 郭秋寧,活性氧化鋁活性、製備及應用,廣西化工第25捲1996
年第四期,1996。
17 郭中倫,氧化鋁粒徑尺寸與晶型對表面反應性的影響,成功大
學碩士論文 ,2008。
18 王勇,從矽片切削砂漿中提取矽、碳化矽及聚乙二醇,中國發。
明專利申請,2010.4
19 孫余憑,從矽片切割加工副產物中回收切割液的方法,中國發
明專利申請,2006.4。
20 譚業南 ,一種製備活性氧化鋁新方法,催化學報29卷第10
期 ,2008.10月。
21 賴怡伶,含纖維素之生物吸附劑對重金屬吸附之研究研,中央
大學碩士論文 ,2008。
22 楊雅嵐、江柏風,新世代元件 我國碳化矽元件發展策略,財
團法人工業技術研究院產業經濟與趨勢研究中心 ,2010.8。
23 鄭大偉,焚化灰渣水淬熔渣製成重金屬吸附劑之研究,行政院
原子能委員會委託研究計畫研究報告 ,2010。
24 L.D.Hart,Alumina Chemicals Science and Technology
Handbook,1990。
25 Yuan-Ming Chen,Separation of silicon and silicon carbide using
an electrical field Yung-FuWu, Separation and Purification
echnology,2009.4。
26 Anping Dong etc,Benefi cial and Technological Analysis
for the Recycling of SolarGrade Silicon Wastes,Energy
Conservation,2011.7。
27 Piotr Ostrowsk etc,Experimental validation of crystalline
silicon solar cells recycling by thermal and chemical methods
,Solar Energy Materials & Solar Cells 94,2010。
28 H. Baba, Y. Sakaguchi etc,Purification of metallurgical silicon
up to solar grade,Solar Energy Materials & Solar Cells 34,1994
29 B.N. Mukashev etc,Development of a technology of silicon
production by recycling phosphorous industry wastes,Solar
Energy Materials & Solar Cells 72,2002。
30 Tzu-Hsuan Tsai ,Silicon sawing waste treatment by
electrophoresis and gravitational settling,Solar Energy Materials
& Solar Cells,2011。
31 Wenhui Ma etc,Preparation of solar grade silicon form optical
Fibers wastes with thermal plasmas,Solar Energy Materials
& Solar Cells,2004。
指導教授 李俊福 審核日期 2013-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明