參考文獻 |
[1] NATIONS, UNITED. KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE. 1998; Available from: http://unfccc.int/resource/docs/convkp/kpeng.pdf.
[2] 林明獻, 太陽能電池技術入門 2007: 全華圖書股份有限公司.
[3] Agua Caliente Solar Project. Available from: http://www.firstsolar.com/en/Projects/Agua-Caliente-Solar-Project.
[4] Arons, A. B., & Peppard, M. B. , Einstein’s Proposal of the Photon Concept—a Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 1965. 33(5): p. 367-374.
[5] 蔡進譯, 超高效率太陽電池─從愛因斯坦的光電效應談起. 物理雙月刊, 2005. 27: p. 701-719.
[6] 太陽能電池. Available from: http://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0.
[7] Lyu, Hong-Kun, Sim, J. H., Woo, Sung-Ho, Kim, K. P., Shin, Jang-Kyoo,& Han Y. S. , Efficiency enhancement in large-area organic photovoltaic module using theoretical power loss model. Solar Energy Materials and Solar Cells, 2011. 95(8): p. 2380-2383.
[8] Jung, J., Kim, D., Lim, J., Lee, C.,& Yoon, S. C., Highly Efficient Inkjet-Printed Organic Photovoltaic Cells. Jpn. J. Appl. Phys., 2010. 49.
[9] Hou, J., Chen, Hsiang-Yu, Zhang, S., Chen, R. I., Yang, Y., Wu, Y.,& Li G. , Synthesis of a Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc, 2009. 131(43).
[10] Yang, Y., Mielczarek, K., Aryal, M., Zakhidov, A.,& Hu, W., Nanoimprinted Polymer Solar Cell. ACS Nano, 2012. 6(4): p. 2877-2892.
[11] Kim, J. Y., Kim, S. H., Lee, Hyun-Ho, Lee, K., Ma, W., Gong, X.,& Heeger, A. J. , New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials, 2006. 18(5): p. 572-576.
[12] Chou, S. Y., Krauss, P. R.,& Renstrom, P. J. , Nanoimprint Lithography. J. Vac. Sci. Technol. B, 1996. 14(6): p. 4129-4133.
[13] Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B.,& Kurz, H. , Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering, 2000. 53: p. 233-236.
[14] Voicu, N. E., Ludwigs, S., Crossland, E. J. W., Andrew, P.,& Steiner, U. , Solvent-Vapor-Assisted Imprint Lithography. Advanced Materials, 2007. 19(5): p. 757-761.
[15] Brabec, C. J., Sariciftci, N. S.,& Hummelen, J. C. , Plastic Solar Cells. Adv. Funct. Mater., 2001. 11(1): p. 15-26.
[16] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K.,& Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868.
[17] He, X., Gao, F., Tu, G., Hasko, D., Huttner, S., Steiner, U., Greenham, N. C., Friend, R. H.,& Huck, W. T. S. , Formation of nanopatterned polymer blends in photovoltaic devices. Nano Lett, 2010. 10(4): p. 1302-1307.
[18] Park, J. Y., Hendricks, N. R.,& Carter, K. R. , Solvent-assisted soft nanoimprint lithography for structured bilayer heterojunction organic solar cells. Langmuir, 2011. 27(17): p. 11252-11258.
[19] 吳定中、韓闕, 微電子電路. 2 ed, 2005: 高點文化.
[20] 許凱翔, 以DSP實現太陽能電池最大功率追蹤控制, 2012, 國立中央大學 機械工程學系. p. 12-15.
[21] 許捷翔, 利用陽極氧化鋁薄膜在矽太陽能電池表面製做抗反射奈米結構, 2012, 國立中央大學 光電科學與工程學系. p. 52.
[22] Yee, K. S. , Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. Antennas and Propagation, IEEE Transactions on, 1966. 14(3).
[23] FDTD電場磁場配置圖. Available from: http://wenku.baidu.com/view/bb89f4936bec0975f465e2d7.html.
[24] Koo, N., Bender, M., Plachetka U., Fuchs, A., Wahlbrink, T., Bolten, J.,& Kurz H., Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material. Microelectronic Engineering, 2007. 84(5-8): p. 904-908.
[25] Zhou, W., Zhang, J., Liu, Y., Li, X., Niu, X., Song, Z., Min, G., Wan, Y., Shi, L.,& Feng, S., Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography. Applied Surface Science, 2008. 255(5): p. 2885-2889.
[26] Keller, F., Hunter, M. S.,& Robinson, D. L., Structural Features of Oxide Coatings on Aluminum. The Electrochemical Society, 1953. 100(9): p. 411-419.
[27] Thompson, G.E., Porous anodic alumina: fabraication, characterization and applications. Thin Solid Films, 1997. 297: p. 192-201.
[28] Zhao, Nai-Qin, Jiang, Xiao-Xue, Shi, Chun-Sheng, Li, Jia-Jun, Zhao, Zhi-Guo, Du, Xi-Wen, Effects of anodizing conditions on anodic alumina structure. Journal of Materials Science, 2007. 42(11): p. 3878-3882.
[29] Wiedemann, W., Sims, L., Abdellah, A., Exner, A., Meier, R. et al., Nanostructured interfaces in polymer solar cells. Applied Physics Letters, 2010. 96(26): p. 263109.
[30] Allen, J. E., Yager, K. G., Hlaing, H., Nam, Chang-Yong, Ocko, B. M., Black, C. T., Enhanced charge collection in confined bulk heterojunction organic solar cells. Applied Physics Letters, 2011. 99(16): p. 163301.
[31] Ko, Doo-Hyun, Tumbleston, J. R., Schenck, W., Lopez, R.,& Samulski, E. T. , Photonic Crystal Geometry for Organic Polymer:Fullerene Standard and Inverted Solar Cells. The Journal of Physical Chemistry C, 2011. 115(10): p. 4247-4254.
[32] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M.,& Heeger, A. J. , Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007. 317(5835): p. 222-225. |