博碩士論文 101323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.133.113.216
姓名 黃信閔(Hsin-Min Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 預混紊流球狀火焰速率與自我相似傳播之量測分析
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在2012年,普林斯頓大學Law之研究團隊(Chaudhri et al.)首度提出一向外傳
播預混紊流球狀火焰具有自我相似之傳播特性,他們發現正規化紊流火焰傳播速率[(1/SbL)d/dt]與一火焰紊流雷諾數(ReT,flame = u’/DT < 2,500)呈現1/2冪次之自我相似傳播關係,其中SbL為未作密度校正之層流燃燒速率(生成物SL),為平均紊焰半徑,t為時間,u’為方均根紊流擾動速度,以及DT為熱擴散係數。我們特別用下標flame來清楚顯示ReT,flame與一般所認知之流場紊流雷諾數ReT,flow = u’LI/相當地不同,其中LI為積分長度尺度,而則為為運動黏滯係數。值得一提的是,Law團隊所量測紊流火焰速率(d/dt)之方法,與傳統量測紊流火焰速率(SF)有所異同,相同之處為兩者均需先量測與t之函數關係,並取中段vs. t之資料作分析,以避開前段引燃和後段容器尺寸限制之影響;不同之處僅在傳統SF = /t,是以線性耦合中段 vs. t之資料,而d/dt是將中段所有值對t作微分。事實上,由Law團隊和本實驗室所獲得之資料,均顯示d/dt會隨t之增加而近似線性增加,故SF可看作d/dt對時間之平均值。本研究主要回答下列兩大問題:(1)若使用SF數據,d/dt與ReT,flame之自我相似傳播特性是否仍存在?(2)若是,此自我相似傳播特性是否仍適用於ReT,flame遠大於2,500?
為釐清前述之問題,本論文採用本實驗室已建立之大型高壓雙腔體設計之十字形預混紊流燃燒設備,其可產生可控制之近似等向性紊流並使燃燒實驗可在固定系統壓力條件下進行,實驗使用與Law團隊相同之當量比 = 0.9的甲烷/空氣燃氣,進行一系列不同固定系統壓力(p = 0.1 ~ 0.5 MPa)及不同u’值(u’ = 1.43 ~ 5.60m/s)之燃燒實驗,使用Schlieren光學技術(100 × 100 mm2)和直接火焰拍攝法(170 × 170 mm2),以擷取平均球狀紊焰半徑隨時間變化之資料,即找到(t)。實驗結果顯示,在不同p及u’下,對ReT,flame關係之數據不僅仍具有自我相似傳播特性,且本研究所量得之(1/SbL)d/dt資料與Law團隊之資料有高度重合性,我們並找到前述球狀紊焰之自我相似傳播特性於ReT,flame高達10,000時,仍存在之証據。此研究結果對預混紊流燃燒領域有重要之貢獻。
摘要(英) In 2012, Law and his co-workers at Princeton university (Chaudhri et al.) found that a constant-pressure, unity Lewis number expanding turbulent premixed flame has the self-similar propagation, in which the normalized turbulent flame speed [(1/SbL)d/dt] as a function of the average flame radius () scales as a flame turbulent Reynolds number (ReT,flame = u’/DT < 2,500) to the one-half power.
is laminar burning velocity before density correlation, and the superscript b indicates the burnt side, t is time, u’ is the r.m.s. turbulent fluctuation velocity, and DT is the
thermal diffusivity. Here the subscript flame is used to clearly distinguish ReT,flame from the fenerally-used flow turbulent Reynolds number (ReT,flow = u’LI/ , where LI
is the integral length scale of turbulence and  is the kinematic viscosity of reactants. It is worthy of noting that there are similarity and difference on the determination of turbulent flame speed between d/dt and SF (the tradition method). The similarity is that both methods need to measure as a function of t first, and then analyze some middle part of vs. t data in order to avoid the influence of ignition in the beginning of flame growth and circumvent the influence of the chamber walls in the latter flame propagation. The only one difference is that SF = /t which is the slope of the traditional method uses the linear fitting to obtain middle part of vs. t data and thus SF if an average turbulent flame speed, while d/dt is to differentiate all available data within the middle part of vs. t data that increases nearly linearly with time. Actually, SF can be viewed as the average value of d/dt within the same time period of vs. t data. We aim to address two key questions: (1)what happen if SF data are applied to replace d/dt and whether does the self-similar propagation still exist?(2)Can aforesaid self-similar propagation, [(1/SbL)d/dt] ~ ReT,flame 0.5, be valid for ReT,flame 2,500?
In order to address the aforesaid questions, a series of lean methane/air mixtures, experiments at the equivalence ratio  = 0.9 and carried out in the large high-pressure,
dual-chamber turbulent premixed combustion facility which can produce controllable near-isotropic turbulence with u’ varying from 1.43 m/s to 5.60 m/s at constant vessel
pressure conditions varying from 1atm to 5atm. Both the Schlieren optical imaging a view field of 100mm × 100mm and the direct flame imaging with a large view field of 170mm × 170mm are applied to measure the average flame radius as a function of time, that is (t). Each of data is ensemble averaged from six identical runs. Results show that at different p and u’, the data of scale as ReT,flame
0.5, which is the same as that of (1/SbL)d/dt, both showing self-similar propagation. Most importantly, such self-similar propagation is fund to be varied even at much higher values of ReT,flame up to 10,000.
關鍵字(中) ★ 預混紊流球狀火焰
★ 紊焰傳播速率
★ 自我相似傳播
★ 火焰紊流雷諾數
關鍵字(英) ★ premixed turbulent spherical flame
★ turbulent flame speed
★ self-similar propagation
★ flame turbulent Reynolds number
論文目次 摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 IX
表目錄 XII
符號說明 XIII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 紊流燃燒理論 5
2.1.1 Huygen’s 傳遞理論 5
2.1.2 預混紊流燃燒狀態圖 7
2.2 火焰傳遞 9
2.2.1 火焰拉伸 10
2.2.2 拉伸與火焰傳遞11
2.2.3 火焰尺寸與火焰速率量測 11
2.3 火焰不穩定性 12
2.3.1 熱擴散不穩定性13
2.3.2 流力不穩定性 14
2.3.3 浮力不穩定性 15
2.4 雷諾數對燃燒速率之影響 15
2.4.1 壓力對紊流燃燒速率之影響 15
2.4.2 固定雷諾數對紊流燃燒速率之影響 16
2.4.3 火焰雷諾數與火焰自我相似傳播 16
第三章 實驗設備與量測方法 24
3.1 高壓預混紊流燃燒器 24
3.2 影像擷取系統 25
3.3 火花引燃量測系統與計算 26
3.4 實驗參數計算 27
3.4.1 燃氣當量比計算 27
3.4.2 火焰影像處理 28
3.5 實驗步驟 29
第四章 結果與討論 33
4.1 層流燃燒速率與火焰厚度 33
4.2 紊流火焰影像 35
4.2.1 Schlieren 紋影影像 35
4.2.2 直接拍攝之火焰影像 36
4.3 紊流火焰傳播速率之計算 37
4.4 火焰紊流雷諾數 39
4.4.1 紊流火焰自我相似傳播 39
4.4.2 火焰傳播速率分析方法比較 40
4.4.3 相同流體紊流雷諾數之火焰傳播 41
4.5 不同燃燒型態之比較 41
第五章 結論與未來工作 58
5.1 結論 58
5.2 未來工作 59
參考文獻 60
參考文獻 [1]經濟部能源局,“中華民國100年能源統計手冊”,2011。
[2]陳幸中,“高壓預混甲烷燃燒:層焰與紊焰傳播速度量測”,國立中央大學機械工程研究所,碩士論文,2009年。
[3]彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[4]林文基,“甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[5]黃朝祺,“貧油甲烷預混紊流燃燒最小引燃能量定量量測”,國立中央大學機械工程研究所,碩士論文,2006年。
[6]許耀文,“高壓預混紊流燃燒最小引燃能量量測”,國立中央大學機械工程研究所,碩士論文,2012年。
[7]Chaudhuri, S., Wu, F., Zhu, D. and Law, C. K., “Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames” Phys. Rev. Lett. 108, 044503 (2012).
[8]Huang, C. C., Shy, S. S., Liu, C. C., Yan, Y. Y., “A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Proc. Combust. Inst. 31, 1401-1409 (2007).
[9]Damköhler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, Z. Elektrchem. 46, 601-652 (1940). (English translation NASA Tech. Mem. 1112, (1947).
[10]Pocheau, A., “Front Propagation in a Turbulent Medium”, Europhys. Lett. 20, 401-406 (1992).
[11]Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, (1985).
[12]Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, 117-138, New York, Plenum (1985).
[13]Bray, K. N. C., “Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., 115-183, New York, Springer-Verlag (1980).
[14]Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst. 21, 1231-1250 (1986).
[15]Peters, N., “The turbulent burning velocity for large-scale and small-scale turbulence”, J. Fluid Mech. 384, 107-132 (1999).
[16]Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion,” Proc. R. Soc. Lond. A 456, 1997-2019 (2000).
[17]Kitagawa, T., Ogawa, T. and Nagano, Y., “The Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Spherically Propagating Laminar Flames,” COMODIA, August 2-5, Japan (2004).
[18]Bradley, D., Haq, M. Z., Hicks, R. A., Kitagawa, T., Lawes, M., Sheppard, C. G. W. and Woolley, R., “Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition,” Combust. Flame 133, 415-430 (2003).
[19]Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study”, Combust. Flame 104, 176-198 (1996).
[20]Liu, C. C., Shy, S. S., Chen, H. C. and Peng, M. W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully-Developed Isotropic Turbulence at Elevated Pressure” Proc. Combust. Inst. 33 , 1293-1299 (2011).
[21]Markstein, G. H., Nonsteady Flame Propagation, Pergamon (1964).
[22]Kelly, A. P. and Law, C. K., “Nonlinear effects in the extraction of laminar flame speed from expanding spherical flames,” Combust. Flame 156, 1844-1851 (2009).
[23]Liu, C. C., Shy, S. S., Peng, M. W., Chiu, C. W. and Dong, Y. C., “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers,” Combust. Flame 159, 2608-2619 (2012).
[24]Darrieus, G., “Propagation D’Un Front de Flamme: Assai de Théorie des Vitesses Anomales de Déflagration par Developpement Spontané de la turbulence”, Presented at 6th Int. Cong. Appl. Mech., Paris (1938).
[25]Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon, Oxford (1987).
[26]Law, C. K. and Sung, C. J., “Structure, Aerodynamics, and Geometry of Premixed Flamelet”, Prog. Energy Combust. Sci., 26, 459-505 (2000).
[27]Daniele S., Jansohn P., Mantzaras J. and Boulouchos K., “Turbulent flame speed for syngas at gas turbine relevant conditions”, Proc. Combust. Inst., 33, 2937-2944 (2011).
[28]Lipatnikov, A. N., and Chomiak, J., “Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations” Prog Energy Combust Sci, 28, 1-74 (2002).
[29]Bradley, D., Lawes, M., and Mansour, M. S., “Correlation of turbulent burning velcities of ethanol-air, measured in a fan-stirred bomb up to 1.2MPa” Combust. Flame 158, 123-158 (2011).
[30]Peters, N., “Turbulent Combustion” Cambridge University Press (2000).
[31]Shy, S. S., Lin, W. J., Peng, K. Z., “High-Intensity Turbulent Premixed Combustion: General Correlations of Turbulent Burning Velocities in a New Cruciform Burner,” Proc. Combust. Inst. 28, 561-568 (2000).
[32]Shy, S. S., I, W. K., Lin, M. L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study,” Exp. Therm. Fluid Sci. 20, 105-114 (2000).
[33]Yang, T. S., Shy, S. S., Chyou, Y. P., “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis,” J. Mech. 21, 157-169 (2005).
[34]Yang, T. S., Shy, S. S., “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements,” J. Fluid Mech. 526, 171-216 (2005).
[35]Liu, C. C., Shy, S. S., Chiu, C. W., Peng, M. W., Chung, H. J., “Hydrogen/Carbon Monoxide Syngas Burning Rates Measurements in High-Pressure Quiescent and Turbulent Environment,” Int. J. Hydrogen Energy 36, 8595-8603 (2011).
[36]Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow 1, Ronald Press (1953).
[37]Chaudhuri, S., Wu, F., Zhu, D. and Law, C. K., “Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames” Phys. Rev. Lett. 108, 044503 (2012).
[38]董益銍,“淨煤氣化合成氣貧油可燃極限與速度量測:壓力和紊流效應”,國立中央大學機械工程研究所,碩士論文,2012年。
[39]Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K and Niioka, T., “Turbulence Measurements and Observations of Turbulent Premixed Flames at Elevated Pressures up to 3.0 MPa” Combust. Flame 108, 104-117 (1997).
[40]Rozenchan, G., Zhu, D. L., Law, C. K. and Tse, S. D., “Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 atm”, Proc. Combust. Inst., 29, 1461-1469 (2002).
[41]Lipatinikovi, A. N., private communication.
[42]Andrews, G. E., and Bradley, D., “The Burning Velocity of Methane-Air Mixtures,” Combust. Flame 19, 275-288 (1972).
[43]Smallwood, G. J., Gulder, O. L., Snelling, D. R. and Deschamps, B. M., “Characterization of Flame Front Surfaces in Turbulent Premixed Methane/Air Combustion” Combust. Flame 101, 461-470 (1995).
[44]Kobayashi, H., Tamura, T., Maruta, K. and Niioka, T., “Burning velocity of Turbulent Premixed Flames in a High-Pressure Environment”, in: Twenty-Sixth Symposium (international) on Combustion, The Combustion Institute, Pittsburgh, 1996, pp. 389-396.
[45]Kobayashi, H., Seyama, K., Hagiwara, H. and Ogami, Y., “Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature”, Proc. Combust. Inst., 30, 827-834 (2005).
[46]Wang, H., You, X. Q., Joshi, A. V., Davis, S. G., Laskin, A., Egolfopoulos, F., Law, C. K., USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds, May 2007. .
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2013-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明