博碩士論文 943403047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.221.163.13
姓名 林明源(Ming-Yuan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用外部作用增加水電解產氫效率之研究
(The improvement of efficiency on the water electrolysis hydrogen production by exterior actions)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水電解產氫是目前產生氫氣常用的方法,擁有高效能、產生氫氣純度高、使用便利等特色。本實驗利用鎳電極,在水電解產氫時加入脈衝與磁力和超音波場,探討磁流體動力學與脈衝作用和超音波場下,水電解產氫相關參數之影響。在實驗中觀察到,磁力會形成勞倫茲力,促使電解液之對流方向不同,影響水電解之氣泡流向,適當磁力有增強產氫效果;且鐵磁性電極容易受磁化作用,與磁力形成之勞侖茲力,對磁流體動力學彼此有相加乘之效果,能降低極化作用與電解時之過電壓,進而增加產氫效率。而脈衝會使瞬間電流值提升、促使氣泡加速脫離電極表面、加速電解液離子質傳擴散作用、降低氣泡擴散層、降低電化學極化作用,進而提高電解產氫效率。水電解會產生氫氣與氧氣之微小氣泡,此氣泡附著於電極表面,將會產生氣阻現象,因而導致電流下降、造成能量損失,在電解時提供超音波場,將可使此現象改善。利用電化學阻抗頻譜(EIS),探討超音波水電解之極化阻抗現象,以EIS方法與曲線迴歸方式,探討水電解之電化學反應。
在常溫下、電極間距2 mm、電壓4 V,加入磁場狀態下:鐵磁材料鎳電極所提升之電流增加率為14.6%;順磁材料之白金電極提升之電流增加率為10%;逆磁材料之石墨電極增加較不明顯,可知加入磁力確實會提升水電解產氫效率,且在鐵磁性電極與電極距離越近提升效果最佳。加入脈衝時,當循環負載10%、Ton=10 ms時,整體電量可節省將近88%、電流密度增加值可增加680 mA/cm2、電流密度增加率約為38%;整體來說同時加入脈衝與磁場作用,在適當脈衝與基礎電壓作用下,會有相互增強之效果。超音波水電解實驗中發現,主要是改善活性與濃度阻抗現象,並影響水電解時上升之氣泡束,且超音波大小、電極間距、電解液濃度等,為影響水電解時的重要參數。在常溫下、當電極間距2 mm、電壓4 V、40 wt%、超音波強度225 W時,電流差值約為240 mA/cm2,扣除超音波場之能量消耗,省電能約為3.5 kW、節能增加率約15%左右。
摘要(英) Water electrolysis is one of the most common ways to produce hydrogen gas. It has several merits, such as: high efficiency, high purity, and easy use. This experiment uses nickel electrodes and adds pulses and magnetic force and ultrasonic wave field in the production of hydrogen via electrolysis of water, exploring how related parameters are affected by magnetohydrodynamics (MHD) and pulses and ultrasonic wave field.The experiment observed that the Lorentz force of the magnetic field causes the electrolyte’s convective flow to change direction, affecting the flow of bubbles during electrolysis; suitable magnetic force can enhance hydrogen production. Furthermore, ferromagnetism electrodes are more affected by magnetism, and multiply the Lorentz effect. It reduces the polarization and over-potential during electrolysis, and thus increases the effectiveness of hydrogen production. Pulse causes instantaneous current to increase, accelerating the speed bubbles leave the surface of the electrode, as well as the rate of mass transfer in the electrolyte, which lowers the diffusion layer and electrochemical polarization, and further increases hydrogen production efficiency. The water electrolysis generated minute hydrogen and oxygen bubbles, and the bubbles adhered to the electrode surface resulting in air lock phenomenon, so that the fall of current caused energy loss. This phenomenon can be improved by providing ultrasonic wave field in electrolysis. This study used Electrochemical Impedance Spectroscopy (EIS) to discuss the polarization impedance phenomenon of ultrasonic water electrolysis. The EIS method and curvilinear regression have never been used to discuss the electrochemical reaction of water electrolysis.
With the magnetic field at room temperature, electrode spacing of 2 mm and a voltage of 4 V, nickel electrodes (ferromagnetism material) can promote current density by 14.6%, and Platinum electrodes (paramagnetism material) can promote current density by 10%. The promotion of current density is not significant for graphite electrodes (diamagnetism material). It indicates the magnetic force does enhance the efficiency of water electrolysis, and ferromagnetism is the best choice for electrodes; when there is a 10% duty cycle and Ton=10 ms, almost 88% of overall power can be conserved, current density will increase by 680 mA/cm2, with an increase rate of roughly 38%. In general, pulse and magnetic field effects will enhance one another when added under suitable pulse and basic voltage.the ultrasonic wave field improved the activity and concentration impedance, and affected the rising air bubble plume in water electrolysis. The ultrasonic intensity, electrode gap and electrolyte concentration were important parameters influencing water electrolysis. At normal temperature, when the electrode gap was 2 mm, the potential was 4 V, 40 wt%, and the ultrasonic intensity was 225 W, the difference in current density was 240 mA/cm2. After deducting the energy consumption of ultrasonic wave field, 3.5 kW of energy was saved, and the economical power efficiency was 15%.
關鍵字(中) ★ 電解水
★ 勞侖茲力
★ 脈衝
★ 超音波
★ 磁流體動力學
★ 電化學阻抗頻譜
關鍵字(英) ★ Electrolytic Water
★ Lorentz Force
★ Pulse
★ ultrasonic
★ Magnetohydrodynamics
★ EIS
論文目次 目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XII
一、序論 1
1-1 前言...................................1
1-2 文獻回顧................................2
1-3 研究目的與動機...........................6
二、理論 9
2-1 電解反應................................9
2-2 勞侖茲力...............................11
2-3 電解液導電度............................12
2-4 極化現象...............................13
2-5 電化學阻抗與等效電路.....................15
2-6 電極之磁化效應..........................17
2-7 脈衝電壓...............................19
2-8 效率..................................20
2-8-1 磁場電流效率..........................21
2-8-2 脈衝電流效率..........................21
2-8-3 超音波電流效率........................23
三、實驗設備與步驟 25
3-1 實驗儀器............................25
3-1-1 恆電位儀...........................25
3-1-2 導電度測量器........................25
3-1-3 溫度測量器..........................26
3-1-4 超音波產生器........................26
3-2 實驗用品...............................26
3-2-1 磁鐵..............................26
3-2-2 實驗藥品...........................27
3-2-3 電極材料...........................27
3-3 實驗步驟...............................28
3-3-1 磁場水電解產氫......................28
3-3-2 脈衝水電解產氫 .....................29
3-3-3 超音波水電解產氫....................30
四、結果與討論 32
4-1 磁場下之水電解效應...................... 32
4-1-1 磁力作用下電解液對流現象之觀察.........33
4-1-2 電極間距對磁場效應之影響............. 34
4-1-3 電極材料、電解液濃度對磁場效應之影響....37
4-2 磁場與脈衝下之水電解效應..................40
4-2-1 水電解在脈衝下之效應.................41
4-2-2 水電解在脈衝加磁場下之效應............43
4-3 超音波下之水電解效應.....................47
4-3-1 濃度與電極距離之效應.................48
4-3-2 極化阻抗效應........................49
4-3-3 電解效率...........................51
4-3-4 氣泡束現象..........................53
五、結論與未來研究方向 55
5-1 磁場下之水電解作用..................... .55
5-2 脈衝與磁場下之水電解作用............... ..56
5-3 超音波場下水電解作用................... .57
5-4 未來研究方向............................58
六、參考文獻 59
表 64
圖 67
參考文獻 [1] 曲新生、陳發林,氫能技術,五南出版社,台北,民國95年。
[2] N. Nagai, M. Takeuchi, T. Kimura and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,” Int J Hydrogen Energy, Vol 28, pp. 35-41, 2003.
[3] M. P. M. Kaninski, D. L. Stojic, D. P. Saponjic, N. I. Potkonjak and, S. S. Miljanic, “Comparison of different electrode materials-Energy requirements in the electrolytic hydrogen evolution process,” J Power Sources, Vol 157, pp. 758-64. 2006.
[4] R. F. de Souza , J. C. Padilha , R. S. Goncalves , M. O. de Souza and J. Rault-Berthelot, “ Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device, ” J Power Sources, Vol 164, pp. 792-798, 2007.
[5] R. F. de Souza , J. C. Padilha , R. S. Goncalves and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications; Vol 8, pp. 211-216, 2006.
[6] D. L. Stojic , M. P. Marceta , S. P. Sovilj and S. S. Miljanic, “Hydrogen generation from water electrolysis-possibilities of energy saving,” J Power Sources, Vol 118, pp. 315-319, 2003.
[7] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “ Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, ” Int J Hydrogen Energy, Vol 26, pp. 653-659, 2001.
[8] H. Matsushima, A. Bund, W. Plieth, S. Kikuchi and Y. Fukunaka, “Copper electrodeposition in a magnetic field,” Electrochimica Acta, Vol 53, pp. 161–166, 2007.
[9] A. Bund, S. Koehler, H. H. Kuehnlein and W. Plieth, “Magnetic field effects in electrochemical reactions,” Electrochimica Acta, Vol 49, pp. 147–152, 2003.
[10] T. Weier, R. Huller, G. Gerbeth and F. P. Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis,” Chemical Engineering Science, Vol 60, pp. 293-298, 2005.
[11] T. Iida, H. Matsushima and Y. Fukunaka, “Water Electrolysis under a Magnetic Field,” J Electrochemical Soc, Vol 154, pp. 112-115, 2007.
[12] M. Hisayoshi, K. Daisuke and F. Yasuhiro, “Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field,” Electrochimica Acta, Vol 54, pp. 5858–5862, 2009.
[13] H. Matsushima, Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity Part II. Description of gas bubble evolution phenomena,” Electrochimica Acta, Vol 51, pp. 4190-4198, 2006.
[14] M. Wang, Z. Wang and Z. Guo , “Water electrolysis enhanced by super gravity field for hydrogen production,” Int J Hydrogen Energy, Vol 35, pp. 3198-3205, 2010.
[15] M. Y. Lin, L. W. Hourng and C. W. Kuo, “The effect of magnetic force on hydrogen production efficiency in water electrolysis,” Int. J. Hydrogen energy, Vol 37, pp. 1311-1320, 2011.
[16] H. Matsushima, D. Kiuchi and Y..Fukunaka, “Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field,” Electrochimica Acta, Vol 54, pp. 5858–5862, 2009.
[17] A. Marlot, P. Kern and D. Landolt, “Pulse plating of Ni/Mo alloys from Ni-rich electrolytes,” Electrochimica Acta, Vol 48, pp.29–36, 2002.
[18] M. Ghaemi and L. Binder, “Effects of direct and pulse current on electrodeposition of manganese dioxide,” J Power Sources, Vol 111, pp. 248-254, 2002.
[19] N. Shimizu, S. Hotta, T. Sekiya and O. Oda, “A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply,” J Appl Electrochem, Vol 36, pp.419-423, 2006.
[20] W. Olbrich and G. Kampschulte, “Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage,” Surface and Coatings Technology, Vol 61, pp. 262-267, 1993.
[21] C. Muller, M. Sarret and T. Andreu, “ZnMn alloys obtained using pulse, reverse and superimposed current modulations,” Electrochimica Acta, vol 48, pp. 2397-2404, 2003.
[22] P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan and O. N. Srivastava, “Hydrogen generation by water electrolysis using carbon nanotube anode, ” Int J Hydrogen Energy, Vol 35, pp. 3945-3950, 2010.
[23] V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic , M. P. Marceta Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis - Energy saving,” Int J Hydrogen Energy, Vol 35, pp. 12369-12373, 2010.
[24] S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V. N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” Int J Hydrogen Energy, Vol 35, pp. 5986-5891, 2009.
[25] H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” Int J Hydrogen Energy, Vol 35, pp. 10851-10858, 2010.
[26] K. Zeng and D. Zhang , “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Progress in Energy and Combustion Science, Vol 36, pp. 307–326, 2010.
[27] D. Young, Hugh, University Physics, 8th Ed., Addison-Wesley, 1992.
[28] S. D. Li, C. C. Wang and C. Y.Chen, “Water electrolysis in the presence of an ultrasonic field,” Electrochimica Acta, Vol 54, pp. 3877-3883, 2009.
[29] J. Ivy, Summary of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory., Colorado, 2004.
[30] M. S. Casper, Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques, Noyes Data Corp.,New Jersey,1978.
[31] J. R. Macdonload and W. R. Kenan, Impedance spectroscopy, emphasizing solid materials and systems, Wiley, New York, 1987.
[32] 黃心華,「電解水產氫中極化作用之分析與研究」,國立中央大學,碩士論文,民國102年。
[33] 田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社印行,民國97年。
[34] 郭展維,「磁場對電解水產氫效率之研究」,國立中央大學,碩士論文,民國99年。
指導教授 洪勵吾(Hourng, Lih-Wu) 審核日期 2013-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明