參考文獻 |
[1] P. Luby, “Zero Carbon Power Generation”, Petroleum & Coal, vol. 46, pp. 1-16, 2004.
[2] T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda and Y. Miyazaki, “Platinum and Molybdenum Oxide Deposited Carbon Electrocatalyst for Oxidation of Hydrogen Containing Carbon Monoxide”, Electrochemistry Communications, Vol. 4, pp. 442-446, 2002.
[3] C.W. Skarstrom, U.S. Patent 2,944,627 (1960), to Esso Research and Engineering Company.
[4] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
[5] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System” CO2 in He(I), Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
[6] E. Glueckauf and J.I. Coates, “Theory of Chromatography, Part IV: The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation", J. Chem. Soc., pp. 1315–1321, 1947.
[7] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption", J. Chem. Eng. Japan, Vol. 16, pp. 114-119, 1983.
[8] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve", Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
[9] R.T. Yang and S.J. Doong,“Gas Separation by Pressure Swing Adsorption: A Pore- Diffusion Model for Bulk Separation", AIChE J., Vol. 31, pp. 1829–1842, 1985.
[10] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., Vol. 32, pp. 397-410, 1986.
[11] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., Vol. 33, pp. 1045-1049, 1987.
[12] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge", Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
[13] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process", Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
[14] G.G. Vaporciyan and R.H. Kadlec, “Equilibrium Limited Periodic Separating Reactors", AICHE J., vol.33, pp. 1334-1343, 1987.
[15] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Chemisorption of Carbon Dioxide on Sodium Oxide Promoted Alumina", AIChE J., vol. 53, pp. 2824-2831, 2007.
[16] K. B. Lee, A. Verdooren, H. S. Caram, and S. Sircar, “Chemisorption of Carbon Dioxide on Potassium-Carbonate-Promoted Hydrotalcite", J. Colloid Interface Sci., vol. 308, pp. 30-39, 2007.
[17] M. G. Beaver, H. S. Caram, and S. Sircar, “Selction of CO2 Chemisorbent for Fuel-Cell Grade H2 Production by Sorption-Enhanced Water Gas Shift Reaction", Int. J. Hydrogen Energy, vol. 34, pp.2972-2978, 2009.
[18] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Production of Fuel-Cell Grade Hydrogen Thermal Swing Sorption Enhanced Reaction Concept", International Journal of Hydrogen Energy, vol. 33,pp. 781-790, 2008.
[19] Y. Chen, Y. Zhao, C. Zheng, and J. Zhang, “Numerical Study of Hydrogen Production via Sorption-Enhanced Steam Methane Reforming in a Fluidized Bed Reactor at Relatively Low Temperature", Chem.l En. Sci., vol. 92, pp. 67-80, 2013.
[20] M. Saric, Y. C. V. Delft, R. Sumbharaju, D. F. Meyer, A. D. Groot, “Steam Reforming of Methane in a Bench-Scale Membrance Reactor at Realistic Working Conditions", Catalysis Today, vol. 193, pp. 74-80, 2012.
[21] C. Han, and D. P. Harrison, “Simulation Shift Reaction and Carbon Dioxide Separation for the Direct Production of Hydrogen", Chem. Eng. Sci., vol. 49, pp. 58-75, 1994.
[22] B. T. Carvil, J. R. Hufton, M. Anand, and S. Sircar, “Sorption Enhanced Reaction Process", AIChE J., vol.42, pp. 2765-2772, 1996.
[23] E. R. Selow, P. D. Cobden, P. A. Verbraeken, J. R. Hufton and R.W. Brink, “Carbon Capture by Sorption-Enhanced Water-Gas Shfit Reaction Process Using Hydrotalcite-based Material", Ind. Eng. Chem. Res., vol. 48, pp. 4184-4193, 2009.
[24] B. Y. Kwang, and P. H. Douglas, “Low-Pressure Sorption-Enhanced Hydrogen",vol. 44, pp. 1665-1669,2005.
[25] SM. Leiby, Option for Refinery Hydrogen, Process Economics Program Report, No. 212, Menlo Park, CA, SRI International, 1994.
[26] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Seventh Edition, McGraw-Hill Inc., New York, 2005.
[27] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Inc., New York, 1954.
[28] C. Yongtaek, and G. S. Harvey, “Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel Cell Grade Hydrogen", Journal of Power Sourses,vol. 124,pp. 432-439, 2003.
[29] J. G. Xu, G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift. I. Intrinsic Kinetics". AIChe Journal, vol. 35, pp.88, 1989.
[30] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar , “Performance of Na2O Promoted Alumina as CO2 Chemisorbent in Sorption-Enhanced Reaction Process for Simultaneous Production of Fuel-Cell Grade H2 and Compressed CO2 from Synthesis Gas", J. Power Sources, vol. 176, pp. 312-319, 2008.
[31] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Novel Thermal-Swing Sorption-Enhanced Reaction Process Concept for Hydrogen Production by Low-Temperature Steam-Methane Reforming", Ind. Eng. Chem. Res, vol. 46, pp. 5003-5014, 2007.
[32] National Energy Technology Laboratory, “Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems", The United States Department of Energy, DOE/NETL-401/080509, 2009.
[33] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Effect of Reaction Temperature on the Performance of Thermal Swing Sorption-Enhanced Reaction Process for Simultaneous Production of Fuel-Cell-Grade H2 and Compressed CO2 from Synthesis Gas", Ind. Eng. Chem. Res., vol. 47, pp. 6759-6764, 2008.
[34] Argonne National Laboratory, “Hydrogen from Steam-Methane Reforming with CO2 Capture", 20th Annual International Pittsburgh Coal Conference, 2003.
[35] W. E. Waldron, J. R. Hufton, and S. Sircar, “Production of Hydrogen by Vyclic Sorption Enhanced Reaction Process", AIChE J., vol. 47, pp. 1477-1479, 2001. |