博碩士論文 100324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.145.46.232
姓名 黃瑜傑(Yu-jie Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
(Production of high-purity hydrogen and carbon dioxide capture by sorption enhanced reaction process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析
★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討變溫吸附程序處理水煤氣反應(water gas shift reaction, WGS)以及變壓和變溫吸附程序(pressure and temperature swing adsorption, PSA and TSA)處理甲烷重組反應(steam methane reforming, SMR),所使用的吸附劑分別為Na2O-promoted alumina和K2CO3-promoted hydrotalcite,吸附反應器依據Le Chatelier原理,可藉由吸附劑選擇性地移走產物來增加正向反應速率和轉化率,目的為產生燃料電池等級之氫氣(極高純度之氫氣及一氧化碳濃度<100ppm),並將二氧化碳濃縮回收減少溫室氣體的排放。
模擬程式中使用了method of lines結合upwind differences和cubic spline approximation,再以ODEPACK套裝軟體中之LSODE程式對時間作積分,估計出下段時間的濃度、溫度及壓力,之後一直重複循環計算到系統達到週期性穩態為止。
本研究先以程式驗證Na2O-promoted alumina的突破曲線、WGS TSA 單塔六步驟程序、SMR TSA 單塔三步驟,證明程式的可信度。
本研究使用了三種不同的吸附反應程序,分別為WGS TSA 單塔六步驟程序、SMR PSA 單塔四步驟程序、SMR TSA 單塔三步驟程序。三個程序的最佳操作條件是經由不同的操作變因探討後得到的,例如:進料組成、進料壓力、進料時間、吸附劑和觸媒的比例等。
摘要(英) This study is numerically investigating Pressure Swing Sorption Enhanced Reaction Process and Thermal Swing Sorption Enhanced Reaction Process on steam-methane reforming (SMR) and water gas shift (WGS) reaction by Na2O-promoted alumina and K2CO3-promoted hydrotalcite, respectively. According to Le Chatelier’s law, the forward reaction rates and conversion can be increased by removing some products selected. Therefore, this concept can be used to generate product of fuel-cell grade hydrogen (very high-purity hydrogen with <100ppm CO). Carbon dioxide can also be recovered and sequestrated to reduce greenhouse gas effects.
The method of lines is utilized, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state.
In this study, we first simulate breakthrough curve of Na2O-promoted alumina, WGS temperature swing adsorption (TSA) single-bed six-process and SMR TSA single-bed three-process cited from literatures to prove the accuracy of simulation program.
Three different processes have been studies, WGS TSA single-bed six-process, SMR pressure swing adsorption (PSA) single-bed four-process and SMR TSA single-bed three-process. The optimal operating conditions are obtained by varying operating variables, such as feed time, feed pressure, feed composition, ratio of adsorbent and catalyst, etc.
關鍵字(中) ★ 吸附反應器
★ 高純度氫氣
關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
目錄 iv
圖目錄 viii
表目錄 xiii
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1 吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑及其選擇性 6
2-1-3 變壓吸附基本操作步驟 7
2-2 文獻回顧 9
2-2-1 理論之回顧 9
2-2-2 吸附反應器之相關文獻 11
第三章、理論 14
3-1 基本假設 15
3-2 統制方程式 16
3-3 吸附平衡關係式 20
3-4 參數推導 25
3-4-1 熱傳係數 25
3-4-2 反應速率方程式 27
3-5 邊界條件與流速 29
3-5-1 邊界條件與節點流速 29
3-5-2 閥公式 30
3-6求解步驟 31
第四章、程式驗證 34
4-1 Na2O-promoted alumina突破曲線之模擬驗證 34
4-2 WGS TSA之模擬驗證 42
4-2-1 WGS TSA 單塔六步驟製程描述 42
4-2-2 WGS TSA 單塔六步驟製程模擬結果 43
4-3 SMR TSA之模擬驗證 46
4-3-1 SMR TSA 單塔三步驟製程描述 46
4-3-2 SMR TSA 單塔三步驟製程模擬結果 47
第五章、數據分析與結果討論 49
5-1 WGS TSA單塔六步驟之模擬 49
5-1-1 水蒸汽與一氧化碳比例和進料時間對WGS TSA單塔六步驟之影響 53
5-1-2 第二步驟時間對WGS TSA單塔六步驟之影響 69
5-1-3 進料壓力對WGS TSA單塔六步驟之影響 76
5-1-4 觸媒與吸附劑比例對WGS TSA單塔六步驟之影響 80
5-2 SMR PSA單塔四步驟之模擬 84
5-2-1進料時間對SMR PSA單塔四步驟之影響 87
5-2-2真空壓力對SMR PSA單塔四步驟之影響 91
5-2-3水蒸汽對甲烷比例對SMR PSA單塔四步驟之影響 95
5-2-4沖洗時間對SMR PSA單塔四步驟之影響 99
5-2-5進料溫度對SMR PSA單塔四步驟之影響 103
5-2-6進料壓力對SMR PSA單塔四步驟之影響 107
5-2-7觸媒與吸附劑比例對SMR PSA單塔四步驟之影響 111
5-3 SMR TSA單塔三步驟之模擬 115
5-3-1水蒸汽與甲烷比例對SMR TSA單塔三步驟之影響 118
5-3-2操作溫度對SMR TSA單塔三步驟之影響 122
5-3-3進料溫度對SMR TSA單塔三步驟之影響 135
5-3-4觸媒與吸附劑比例對SMR TSA單塔三步驟之影響 139
5-3-5進料壓力對SMR TSA單塔三步驟之影響 143
第六章、結論 147
參考文獻 149
符號說明 152
附錄A、流速之估算方法 156
附錄B、各數據詳細資料 160
附錄C、反應熱與比熱之計算方法 184
附錄D、溫度分佈圖 185
參考文獻 [1] P. Luby, “Zero Carbon Power Generation”, Petroleum & Coal, vol. 46, pp. 1-16, 2004.
[2] T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda and Y. Miyazaki, “Platinum and Molybdenum Oxide Deposited Carbon Electrocatalyst for Oxidation of Hydrogen Containing Carbon Monoxide”, Electrochemistry Communications, Vol. 4, pp. 442-446, 2002.
[3] C.W. Skarstrom, U.S. Patent 2,944,627 (1960), to Esso Research and Engineering Company.
[4] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
[5] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System” CO2 in He(I), Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
[6] E. Glueckauf and J.I. Coates, “Theory of Chromatography, Part IV: The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation", J. Chem. Soc., pp. 1315–1321, 1947.
[7] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption", J. Chem. Eng. Japan, Vol. 16, pp. 114-119, 1983.
[8] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve", Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
[9] R.T. Yang and S.J. Doong,“Gas Separation by Pressure Swing Adsorption: A Pore- Diffusion Model for Bulk Separation", AIChE J., Vol. 31, pp. 1829–1842, 1985.
[10] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., Vol. 32, pp. 397-410, 1986.
[11] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., Vol. 33, pp. 1045-1049, 1987.
[12] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge", Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
[13] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process", Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
[14] G.G. Vaporciyan and R.H. Kadlec, “Equilibrium Limited Periodic Separating Reactors", AICHE J., vol.33, pp. 1334-1343, 1987.
[15] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Chemisorption of Carbon Dioxide on Sodium Oxide Promoted Alumina", AIChE J., vol. 53, pp. 2824-2831, 2007.
[16] K. B. Lee, A. Verdooren, H. S. Caram, and S. Sircar, “Chemisorption of Carbon Dioxide on Potassium-Carbonate-Promoted Hydrotalcite", J. Colloid Interface Sci., vol. 308, pp. 30-39, 2007.
[17] M. G. Beaver, H. S. Caram, and S. Sircar, “Selction of CO2 Chemisorbent for Fuel-Cell Grade H2 Production by Sorption-Enhanced Water Gas Shift Reaction", Int. J. Hydrogen Energy, vol. 34, pp.2972-2978, 2009.
[18] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Production of Fuel-Cell Grade Hydrogen Thermal Swing Sorption Enhanced Reaction Concept", International Journal of Hydrogen Energy, vol. 33,pp. 781-790, 2008.
[19] Y. Chen, Y. Zhao, C. Zheng, and J. Zhang, “Numerical Study of Hydrogen Production via Sorption-Enhanced Steam Methane Reforming in a Fluidized Bed Reactor at Relatively Low Temperature", Chem.l En. Sci., vol. 92, pp. 67-80, 2013.
[20] M. Saric, Y. C. V. Delft, R. Sumbharaju, D. F. Meyer, A. D. Groot, “Steam Reforming of Methane in a Bench-Scale Membrance Reactor at Realistic Working Conditions", Catalysis Today, vol. 193, pp. 74-80, 2012.
[21] C. Han, and D. P. Harrison, “Simulation Shift Reaction and Carbon Dioxide Separation for the Direct Production of Hydrogen", Chem. Eng. Sci., vol. 49, pp. 58-75, 1994.
[22] B. T. Carvil, J. R. Hufton, M. Anand, and S. Sircar, “Sorption Enhanced Reaction Process", AIChE J., vol.42, pp. 2765-2772, 1996.
[23] E. R. Selow, P. D. Cobden, P. A. Verbraeken, J. R. Hufton and R.W. Brink, “Carbon Capture by Sorption-Enhanced Water-Gas Shfit Reaction Process Using Hydrotalcite-based Material", Ind. Eng. Chem. Res., vol. 48, pp. 4184-4193, 2009.
[24] B. Y. Kwang, and P. H. Douglas, “Low-Pressure Sorption-Enhanced Hydrogen",vol. 44, pp. 1665-1669,2005.
[25] SM. Leiby, Option for Refinery Hydrogen, Process Economics Program Report, No. 212, Menlo Park, CA, SRI International, 1994.
[26] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Seventh Edition, McGraw-Hill Inc., New York, 2005.
[27] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Inc., New York, 1954.
[28] C. Yongtaek, and G. S. Harvey, “Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel Cell Grade Hydrogen", Journal of Power Sourses,vol. 124,pp. 432-439, 2003.
[29] J. G. Xu, G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift. I. Intrinsic Kinetics". AIChe Journal, vol. 35, pp.88, 1989.
[30] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar , “Performance of Na2O Promoted Alumina as CO2 Chemisorbent in Sorption-Enhanced Reaction Process for Simultaneous Production of Fuel-Cell Grade H2 and Compressed CO2 from Synthesis Gas", J. Power Sources, vol. 176, pp. 312-319, 2008.
[31] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Novel Thermal-Swing Sorption-Enhanced Reaction Process Concept for Hydrogen Production by Low-Temperature Steam-Methane Reforming", Ind. Eng. Chem. Res, vol. 46, pp. 5003-5014, 2007.
[32] National Energy Technology Laboratory, “Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems", The United States Department of Energy, DOE/NETL-401/080509, 2009.
[33] K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Effect of Reaction Temperature on the Performance of Thermal Swing Sorption-Enhanced Reaction Process for Simultaneous Production of Fuel-Cell-Grade H2 and Compressed CO2 from Synthesis Gas", Ind. Eng. Chem. Res., vol. 47, pp. 6759-6764, 2008.
[34] Argonne National Laboratory, “Hydrogen from Steam-Methane Reforming with CO2 Capture", 20th Annual International Pittsburgh Coal Conference, 2003.
[35] W. E. Waldron, J. R. Hufton, and S. Sircar, “Production of Hydrogen by Vyclic Sorption Enhanced Reaction Process", AIChE J., vol. 47, pp. 1477-1479, 2001.
指導教授 周正堂 審核日期 2013-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明