博碩士論文 100323014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.116.42.208
姓名 潘亦倫(Yi-lun Pan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 PV 追日機發電預測模型與分析
(Modeling and Analysis of Solar Energy Generation for PV-trackers)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究之目的為建立簡單且容易使用的太陽光電(photovoltatic,簡稱PV)發電預測模型,以提供太陽能發電設備投資時的評估。此模型以實際量測氣象資料對不同地區考慮日射量與電池溫度之影響,並採用全年逐時之發電量進行計算。同時也納入不同類型PV追日機(包括固定式、單軸、雙軸追日機)追日時造成之能量損失的偏差角計算。
  以本論中所發展之模式,針對中壢(24.97°N)及恆春(22°N)安裝之太陽光發電裝置進行不同條件之理論發電量分析,結果顯示追日機與固定式相較之下晴天時較具優勢,陰天時則幾乎沒有差別。全年發電量來看,雙軸追日與單軸追日相近,雙軸追日多約2%~3%;傾斜固定與水平固定相近,傾斜固定多約0%~3%;整體而言,追日機較固定式多約15%~16%,恆春較中壢多約34%~36%。單軸追日之最佳傾角於中壢為15°,於恆春為18°;固定式之最佳傾角於中壢為14°,於恆春為17°;且容許全年發電量下降1%的角度範圍約±10°。單軸追日之避免陣列遮陰模式中,「反向追日」比「復歸平面」全年發電量僅多約3%~4%。
  另一方面,為驗證本論文所建立發電預測模型準確性,本論文亦與現有軟體、實測資料等進行比較。與商用PVsyst軟體比較,兩者之全年發電量差異約3%~4%。與國內能源局提供資料比較,兩者之全年發電量差異約7%~8%。由安裝於中央大學與屏東科技大學等追日機實際量測發電量比較結果,單月模擬差異皆約在±6%以內。顯示本論文之PV發電量模型考慮的參數雖然簡單,但模擬結果仍相當接近實際量測發電量。
摘要(英) The main purpose of this thesis is to develop a simple and convenient predicting model of PV-energy production while in evaluating the investment of solar energy facilities. The model calculates the cumulative hourly PV-power to the whole year by using the measured meteorological data at the location of the installed PV-facilities under consideration of the effects of solar irradiation and cell temperature. The calculation of the power loss due to the deviation in tracking angle for the sun on different kinds of PV tracker (fixed-panel, single-axis tracker and dual-axis tracker) is also included in the model.
The model developed in this thesis is at first used to analyze the theoretical solar energy generated in different PV-facilities which are installed at Chungli (24.97°N) and Hengchun (22°N), respectively, under different conditions. The results show that solar trackers in compraison with fixed-panel have advantage at clear days, but no significant difference at cloudy days. The power generated by a dual-axis tracker is similar to a single-axis tracker for a whole year, whereby the dual-axis tracker gains about 2%~3% more than the single-axis tracker. On other hand, the power generated by an inclined fixed-panel is only about 0%~3% more than a horizontally fixed-panel. In general, the trackers (two-axis of single axis) gain 15%~16% more than the fixed-panels. Furthermore, the power generated at Hengchun is 34%~36% more than Chungli. The optimal inclined angle of a single-axis tracker is 15° for installation at Chungli and 18° at Hengchun. The optimal inclined angle of a fixed-panel is 14° for installation at Chungli and 17° at Hengchun. The tolerance range for mounting the inclined angle which affects 1% reduction of generated solar energy is about ±10°. Two methods to avoid array shading of single-axis tracker are also compared for generated solar power. The analysis results show that the power generated by the “back-tracking” method is 3%~4% more than that generated by the “origin position” method for a whole year.
The accuracy and reliability of the proposed prediction model is also validated by comparing with available software and measured data. In comparison with the commercial software PVsyst, the difference of solar energy production in a whole year is about 3%~4%. Compared with the data that domestic Bureau of Energy provides, the difference of solar energy production in a whole year is about 7%~8%. Comparing with measured data of PV-power generation from the trackers installed at National Central University and National Pingtung University of Science and Technology, the simulated energy production for a single month is only within ±6%. The results of the investigation show that the simulated results have a good agreement with the measured data, although the parameters considered in the proposed model are simple.
關鍵字(中) ★ 太陽能
★ 光電發電
★ 追日機
★ 預測模型
關鍵字(英) ★ Solar energy
★ Photovoltaic
★ Sun tracker
★ Predicting model
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 vi
圖目錄 x
表目錄 xx
符號對照表 xxii
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 9
1.2.1 發電預測模型 9
1.2.2 日射量模型 12
1.3 研究目的 15
1.4 論文架構 16
第2章 研究方法 17
2.1 累積發電預測模型 18
2.1.1 基本關係 18
2.1.2 使用者設定參數 19
2.2 時差關係式 21
2.2.1 基本關係 21
2.2.2 均時差 21
2.2.3 經度補正 22
2.3 追日偏差影響關係式 23
2.3.1 基本關係 23
2.3.2 太陽光線向量 25
2.3.3 追日偏差角計算 32
2.4 氣象數據之日射量轉換關係 38
2.4.1 基本關係 39
2.4.2 直射與散射計算式 40
2.4.3 傾斜面日射量 43
2.5 電池溫度影響關係式 45
2.5.1 基本關係 45
2.5.2 電池溫度模型 46
2.5.3 環境參數之影響 49
2.5.4 電池溫度模型模擬與實測比較 51
2.6 氣象資料格式 54
2.6.1 中央氣象局 54
2.6.2 典型氣象年 55
2.7 反向追日轉動關係 58
2.7.1 追日機間距與遮陰角度 58
2.7.2 反向追日模式 59
2.7.3 復歸平面模式 62
第3章 不同類型追日機之PV發電量分析 63
3.1 追日偏差角之影響 64
3.1.1 不同裝置之追日偏差角 65
3.1.2 不同裝置之單日發電量比較 69
3.1.3 不同裝置之全年發電量比較 75
3.2 追日機設計角度之影響 78
3.2.1 單軸PV之主軸傾角 78
3.2.2 固定PV之模組傾角 81
3.3 單軸PV陣列遮陰之影響 83
3.3.1 反向追日模式 84
3.3.2 復歸平面模式 86
3.3.3 遮陰角度與追日機間距 88
3.3.4 發電量模擬結果比較 89
第4章 PV發電模擬之驗證 93
4.1 追日機發電實測 94
4.1.1 PV追日機型式 94
4.1.2 PV發電系統 100
4.2 PVsyst模擬軟體 101
4.2.1 軟體簡介 101
4.2.2 物理模型 102
4.3 以全年日射量推估發電之方法 104
4.3.1 性能比 104
4.3.2 推估全年發電量 106
4.4 分析模擬條件總覽 107
4.4.1 安裝地點 107
4.4.2 裝置規格 110
4.5 PV模擬與PVsyst軟體結果比較 113
4.5.1 參數設定 113
4.5.2 模擬結果與比較 117
4.6 PV模擬與全年日射量推估結果比較 120
4.6.1 參數設定 120
4.6.2 模擬結果與比較 121
4.7 雙軸PV模擬結果與實測比較 124
4.7.1 使用者設定參數 124
4.7.2 模擬結果比較 132
4.8 單軸PV模擬結果與實測比較 147
4.8.1 使用者設定參數:力鋼單軸PV 147
4.8.2 模擬結果比較:力鋼單軸PV 148
4.9 固定式PV模擬結果與實測比較 152
4.9.1 使用者設定參數:力鋼固定式PV 152
4.9.2 模擬結果比較:力鋼固定式PV 153
第5章 結論與展望 157
5.1 結論 157
5.2 未來展望 160
參考文獻 161
附錄 A PV模組溫度實測 1
附錄 B 大氣系日射量修正結果 7
附錄 C PVsyst模擬之設定 10
附錄 D 本論文之PV模擬程式 18
參考文獻 [1] 英國石油(BP):2012年回顧 (2013/6檢索)
http://www.bp.com/en/global/corporate/about-bp/statistical-review-of-world-energy-2013/2012-in-review.html
[2] 維基百科:化石燃料尚可開採年限 (2013/6檢索)
https://zh.wikipedia.org/wiki/%E5%8C%96%E7%9F%B3%E7%87%83%E6%96%99
[3] 英國石油(BP):2030年能源展望 (2013/6檢索)
http://www.bp.com/en/global/corporate/about-bp/statistical-review-of-world-energy-2013/energy-outlook-2030.html
[4] Solarbuzz:PV模組價格 (2013/8檢索)
http://www.solarbuzz.com/facts-and-figures/retail-price-environment/module-prices
[5] MoneyDJ理財網 財經知識庫:太陽能電池 (2013/8檢索)
http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=95f2510e-8010-4acb-a301-e03772e48532
[6] Tyagi, V., V., and Rahim, N., A. et al. “Progress in solar PV technology: research and achievement.” Renewable and Sustainable Energy Reviews, 20, (2013), 443–461.
[7] NREL:Research Cell Efficiency Records (2013/8檢索)
http://www.nrel.gov/ncpv/
[8] Kumar, R., and Rosen, M. A. “A critical review of photovoltaic-thermal solar collectors for air heating.” Applied Energy, 88, (2011), 3603–3614.
[9] Koutroulis, E., and Kalaitzakis, K. et al. “Development of an FPGA-based system for real-time simulation of photovoltaic modules.” Microelectronics Journal, 40, (2009), 1094–1102.
[10] 陽光屋頂百萬座計畫推動辦公室 (2013/8檢索)
http://mrpv.org.tw/about.aspx
[11] 歐文生。「綠建築就是太陽能建築嗎?」科學發展月刊,第460期,(2011),40~47頁。
[12] 歐文生、何明錦等人。「台灣太陽能設計用標準日射量之研究。」中華民國建築學會「建築學報」,第64期,(2008),103–118頁。
[13] Neville RC. “Solar energy collector orientation and tracking mode.” Sol Energy, 20(1), (1978), 7–11.
[14] Abdallah, S. “The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics.” Energy conversion and management, 45(11), (2004), 1671–1679.
[15] Abdallah, S., & Nijmeh, S. “Two axes sun tracking system with PLC control.” Energy conversion and management, 45(11), (2004), 1931–1939.
[16] Deline, C. “Partially shaded operation of a grid-tied PV system.” In Photovoltaic Specialists Conference (PVSC), 34th IEEE, (2009), 1268–1273.
[17] Evans, D., L. “Simplified method for predicting photovoltaic array output.” Solar Energy, 27, (1981), 555–560.
[18] Goossens, D., and Van Kerschaever, E. “Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance.” Solar Energy, 66(4), (1999), 277–289.
[19] Jiang, H., Lu, L., and Sun, K. “Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules.“ Atmospheric Environment, 45(25), (2011), 4299–4304.
[20] Marion, B., and Adelstein, J., et al. “Performance parameters for grid-connected PV systems.” Photovoltaic Specialists Conference, Conference Record of the 31st IEEE, (2005), 1601–1606.
[21] 杜逸龍、劉珮珊等人。「台灣地區結合風能與太陽能發電之可行性案例分析。」中國農業工程學會會刊,農業工程學報,第1期(第55卷),(2009),第53–64頁。
[22] Lorenzo, E., and Perez, M. et al. “Design of tracking photovoltaic systems with a single vertical axis.” Prog. Photovolt: Res. Appl., 10, (2002), 533–543.
[23] Huang, B. J., and Sun, F. S. “Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector.” Energy Conversion and Management, 48, (2007), 1273–1280.
[24] Chang, T., P. “The gain of single-axis tracked panel according to extraterrestrial radiation.” Applied Energy, 86, (2009), 1074-1079.
[25] 施華。「社區發展太陽能發電系統之成本效益評估。」國立交通大學,碩士論文,新竹,(2009)。
[26] 高翊倫。「建構台灣地區太陽能發電系統之發電量預測模型。」國立交通大學,碩士論文,新竹,(2009)。
[27] Lubitz, W. D. “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels.” Applied Energy, 88, (2011), 1710–1719.
[28] Dousoky, G., M., and El-Sayed, A., H., M. et al. “Maximizing energy-efficiency in single-axis solar trackers for photovoltaic panels.” Power Electronics and ECCE Asia (ICPE & ECCE), IEEE 8th International Conference, (2011), 1458–1463, Korea.
[29] Koussa, M., and Cheknane, A. et al. “Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions.” Applied Energy, 88, (2011), 1756–1771.
[30] Li, Z., and Liu, X. et al. “Optical performance of vertical single-axis tracked solar panels.” Renewable Energy, 36, (2011), 64–68.
[31] Maatallah, T., and Alimi, E., S. et al. “Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia.” Renewable and Sustainable Energy Reviews, 15, (2011), 4053–4066.
[32] Zekai S. “Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy.” Springer, London, (2008).
[33] Braun, J. E., & Mitchell, J. C. “Solar geometry for fixed and tracking surfaces.” Solar Energy, 31(5), (1983), 439–444.
[34] Cucumo, M., Kaliakatsos, D., & Marinelli, V. “General calculation methods for solar trajectories.” Renewable Energy, 11(2), (1997), 223–234.
[35] Duffie, J. A., and Beckman, W. A. “Solar engineering of thermal processes.” New York: Wiley Interscience, (1980), 28–110.
[36] Maxwell, E. L. “A quasi-physical model for converting hourly global horizontal to direct normal insolation.” Report SERI/TR-215-3087, Solar Energy Research Institute, Golden, CO, (1987).
[37] Erbs, D., G., Klein, S. A., and Duffie, J. A. “Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation.” Solar Energy, 28(4), (1982), 293-302.
[38] Reindl, D., T., Beckman, W., A., and Duffie, J., A. “Diffuse fraction correlations.” Solar energy, 45(1), (1990), 1-7.
[39] Mondol, J., D., Yohanis, Y., G., and Norton, B. “Solar radiation modelling for the simulation of photovoltaic systems.” Renewable Energy, 33(5), (2008), 1109-1120.
[40] Klucher, T. M. “Evaluation of models to predict insolation on tilted surfaces.” Solar Energy, 23(2), (1979), 111-114.
[41] Liu, B. Y., and Jordan, R. C. “The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada.” Solar Energy, 7(2), (1963), 53-74.
[42] Erbs, D., G., Klein, S., A., and Duffle J., “A. Estimation of the diffuse radiation fraction for hourly, daily, and monthly-average global.” Solar Energy, 28, (1982), 293–302.
[43] Temps, R. C., & Coulson, K. L. “Solar radiation incident upon slopes of different orientations.” Solar Energy, 19(2), (1977), 179-184.
[44] NREL:Glossary of Solar Radiation Resource Terms (2013/7檢索)
http://rredc.nrel.gov/solar/glossary/gloss_g.html
[45] Perez, R., Seals, R., and Ineichen, P. et al. “A new simplified version of the Perez diffuse irradiance model for tilted surfaces.” Solar energy, 39(3), (1987), 221-231.
[46] Skartveit, A., and Olseth, J., A. “A model for the diffuse fraction of hourly global radiation.” Solar Energy, 38(4), (1987), 271-274.
[47] Hay, J., E., and McKAY, D., C. “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies.” International Journal of Solar Energy, 3(4-5), (1985), 203-240.
[48] Notton, G., Poggi, P., and Cristofari, C. “Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: performances of the association of well-known mathematical models.” Energy Conversion and Management, 47(13), (2006), 1816-1829.
[49] Kalogirou, S. A. “Solar energy engineering: processes and systems.” Academic Press, (2009).
[50] Astronomical constant:Obliquity of the ecliptic (2013/10檢索)
http://en.wikipedia.org/wiki/Astronomical_constant#cite_note-IAU06_1-13
[51] 中文百科在線:地球 (2013/10檢索)
http://www.zwbk.org/zh-tw/Lemma_Show/256.aspx
[52] 蔡錫錚、陳柏伶等人。「低剖面太陽光追蹤器之組裝誤差對追日精度影響分析。」中國機械工程學會第二十六屆全國學術研討會論文集,中央大學機械工程學系,(2009)。
[53] Mattei, M., and Notton, C. et al. “Calculation of the polycrystalline PV module temperature using a simple method of energy balance.” Renewable Energy, 31, (2006), 553–567.
[54] Del Cueto, J. A. “Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at fixed tilt.” Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, (2002) , 1523-1526.
[55] Ross, R., G., and Smokler, M., I. “Flat-plate solar array project final report-Vol. VI,” Engineering sciences and reliability, (1986), Report DOE/JPL-1012-125.
[56] Duffie, J., A., and Beckman, W., A. “Solar engineering of thermal processes.” 3 Edition, John Wiley and Sons Inc, (2006).
[57] Skoplaki, E., Boudouvis, A., G., and Palyvos, J., A. “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting.” Solar Energy Material and Solar Cells, 92, (2008), 1393-1402.
[58] King, D., L., Boyson, W., E., and Kratochvill, J., A. “Photovoltaic array performance model.” Albuquerque: Sandia National Laboratories, (2004), Sandia Report Number: SAND2004-3535.
[59] Skoplaki, E., and Palyvos, J., A. “Operating temperature of photovoltaic modules: a survey of pertinent correlations.” Renewable Energy, 34, (2009), 23–29.
[60] King, D., L., Kratochvil, J., A., and Boyson, W., E. “Field experience with a new performance characterization procedure for photovoltaic arrays.” No. SAND--98-3147C, CONF-980735--. Sandia National Labs., Albuquerque, NM (US), (1997).
[61] Wikipedia:Typical meteorological year (2013/10檢索)
http://en.wikipedia.org/wiki/Typical_meteorological_year
[62] Marion, W., and Urban, K. “User’s Manual for TMY2.” National Renewable Energy Laboratory, Golden, CO, (1995).
[63] Wilcox, S., and Marion, W. “Users manual for TMY3 data sets.” Golden, CO: National Renewable Energy Laboratory, (2008).
[64] 憶芳能源:光感測器 (2013/9檢索)
http://www.everphoton.com/sunsensor.html
[65] 上陽能源:太陽能系統介紹 (2013/9檢索)
http://www.toppersun-energy.com/products/prodetail/4
[66] PVsyst:Photovoltaic Software
http://www.pvsyst.com/
[67] Marion, B., and Adelstein, J. et al. “Performance parameters for grid-connected PV systems.” Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE, (2005), 1601-1606.
指導教授 蔡鍚錚 審核日期 2013-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明