國立中央大學九十學年度碩士班研究生入學試題卷

所別: 機械工程學系 丙組 科目: 流體力學 共 2 頁 第 / 頁

1. Fundamentals

(total 10 %)

Define and explain the following terms:

- (a) hydrostatic pressure, (b) specific gravity, (c) Newtonian flow, (d) rotational flow,
- (e) convective acceleration.

2. Bernoulli Equation

(total: 20%)

A pitot tube is installed inside a square channel to measure the incompressible flow, and it is attached with an inclined-tube manometer. The corresponding values for the pitot tube and channel are given as: $\rho_1=1.2 \text{ kg/m}^3$, $\rho_2=1000 \text{ kg/m}^3$, $h_A=20 \text{ cm}$, $h_{\rm B}$ =20 cm, L=50 cm, H=60 cm, g=9.8 m/s².

- (a) What we call the pressure at point A (p_{λ}) and point B $(p_{\rm B})$? (2%)
- (b) Derive the pressure difference $(p_A p_B)$ in terms of ρ_1 , $\rho_2, h_A, h_B, L, g. (6\%)$
- (c) Compute the speed of the channel (V_1) . (4%)
- (d) Compute the volume flow rate of the channel. (3%)
- (e) Write out the complete relation between speed and the pressure for this channel flow? Briefly explain this equation and what terms have you neglected in this equation? (5%)

3. Dimensional Analysis

The flowrate, Q, in an open canal or channel can be measured by placing a plate with a V-notch across the channel as shown in the figure below. The height, H, of the liquid above the crest can be used to determine Q. Assume that $Q = f(H, g, \theta)$ where g is the acceleration of gravity. What are the significant dimensionless parameters for this problem?

4. Control Volume/Momentum Equation

(total: 25%)

Consider unsteady flow in a constant diameter, horizontal pipe shown in the figure below. The velocity is uniform throughout the entire pipe, but it is a function of time: $\mathbf{V} = u(t)\mathbf{i}$.

(a) Use the x component of the unsteady momentum equation to determine the pressure difference (p_1-p_2) . (12%)

(b) Discuss how this result is related to $F_r = ma$. (6%)

(c) Please also determine the pressure difference (p_1-p_2) when the flow is upwards in a vertical pipe. (7%)

國立中央大學九十學年度碩士班研究生入學試題卷

所別: 機械工程學系 丙組 科目: 流體力學 共 之 頁 第 之 頁

5. Viscous Flow

(total 25 %)

Briefly answer and/or define the following questions:

- (a) What is the fully developed flow in a circular pipe? (1 %)
- (b) What are the boundary layer thickness (δ), the displacement thickness (δ), the momentum thickness (Θ), and the wall shear stress (τ_m)? (6%)
- (c) Draw the typical flow patterns for flow pass a v-gutter at Re = 1, Re = 25, and Re = 10,000, where Re is the Reynolds number based on the width of the v-gutter. (6 %)

(d) A one micron diameter dust particle of density $\rho_{\rm e}=1~{\rm gm/cm^3}$ is falling through air ($v=0.15~{\rm cm^2/s}$, $\rho=0.0013$) under the force of gravity. Assuming stokes flow, calculate the terminal falling speed of the particle. Please confirm that Re << 1. How does this speed depend on air density? Explain. (Hint: the stokes drag $D=3\pi\mu Vd_{\rm e}$) (12 %)

6. Compressible Flow

(total 10 %)

Liquids are approximately described by the equation of state (the Tait equation) $\frac{P+B}{B} = \left(\frac{\rho}{\rho_o}\right)^n$, where B and n are constant (B = 3000 atm and n = 7.15 for water), P the

pressure, ρ the density and $\rho_{\rm o}$ the reference density. Please answer the following questions.

- (a) What is the speed of sound in terms of P, ρ_o , B, and n? (3 %)
- (b) Consider a steady, one-dimensional, frictionless, compressible flow from a reservoir at pressure P_o . What is the differential momentum equation for this flow? (3 %)
- (c) What is the Mach number in terms of P, P_o , B, and n? (4%)

CA CAR OF THE PARTY OF THE PART

