國立中央大學99學年度碩士班考試入學試題卷

所別:光機電工程研究所碩士班 乙組(光機)(一般生) 科目:電磁學 共 / 頁 第 / 頁 本科考試可使用計算器, 廠牌、功能不拘

- 1. Point charges of 5×10^{-9} C are located at each of three corners of a square whose side is 20 cm. Find the magnitude and direction of the electric field at the vacant corner point of the square. (10 %) $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m
- 2. A spherical charge density distribution is given by

$$\rho = \rho_0 \left(1 - \frac{r^2}{R^2} \right) \qquad (r \le R)$$

$$\rho = 0, \qquad (r > R)$$

where R is the radius

- (a) Find the total charge. (3 分)
- (b) Find the electric field and the potential outside the charge distribution. (7 分)
- (c) Find the electric field and the potential inside the charge distribution. (7 分)
- (d) Electric field is maximum when $r = x \cdot R$. Find x. (8 %)
- 3. A point charge Q is located inside and at distance d from the center of a grounded spherical conducting shell of radius b (b < d). Determine
 - (a) the potential distribution inside the shell. (8 分)
 - (b) the charge density induced on the inner surface of the shell. (7 分)
- 4. Two coaxial circular coils of radii b_1 and b_2 are separated by a distance d that is much larger than the radii, as depicted in Fig. 1. The coils consist of N_1 and N_2 closely wound turns and carry currents I_1 and I_2 , respectively.
 - (a) Find the vector magnetic potential \vec{A}_{12} , the mutual flux Φ_{12} , and the mutual inductance L_{12} at the point P on coil 2. (15 \Re)
 - (b) Find approximately the force between two coaxial circular coils. (5分)
 - (c) If $b_1 = b_2 = b$ and b = d, they are known as Helmholtz coils. Derive the magnetic flux density at the midpoint between the coils and discuss the physical meaning. (10 分)

-ig |

5. For a harmonic uniform plane wave propagation in a simple medium, both \vec{E} and \vec{H} vary in accordance with the factor $\exp(-i\vec{k}\cdot\vec{r})$. Show that the four Maxwell's equations for uniform plane wave in a source-free region reduce to the following: (20 $\hat{\sigma}$)

$$\vec{k} \times \vec{E} = \mu \omega \vec{H}$$

$$\vec{k} \times \vec{H} = -\varepsilon \omega \vec{E}$$

$$\vec{k} \cdot \vec{E} = 0$$

$$\vec{k} \cdot \vec{H} = 0$$