第一部分 簡答題（每題兩分，共 50 分）
了解每個物理量的因次，可以幫助我們檢查物理方程式是否正確。因為只有相同因次的物理量才能相加減。基本的物理量包括長度 \(l \)、時間 \(t \)、質量 \(m \)、電荷 \(q \)。任何其他物理量都可以用這四個物理量來表示它的因次。例如：速度 velocity 大小 \(|\vec{v}| \) 的因次為 \(l/t^2 \)。請用 \(l, t, m, q \) 這四個基本物理量來表示以下各物理量的因次（建議作答時，除了標示題號，最好也寫出變數名稱，以方便檢查答案）

1. 力 force 的大小 \(|\vec{F}| \)
2. 能量 energy (E)
3. 角動量 angular momentum 的大小 \(|\vec{L}| \)
4. 力矩 torque 的大小 \(|\vec{r}| \)
5. 角速度 angular velocity 的大小 \(|\vec{\omega}| \)
6. 功率 power (P)
7. 壓力 pressure 的強度 \(p \)
8. 電場 electric field 的強度 \(|\vec{E}| \)
9. 磁場 magnetic field 的強度 \(|\vec{B}| \)
10. 重力場 gravitational field 的強度 \(|\vec{g}| \)
11. 質量密度 mass density (\(\rho \))
12. 電荷密度 charge density (\(\rho_e \))
13. 電位 electric potential (\(\phi \))
14. 電阻 electrical resistance (R)
15. 電感 inductance (L)
16. 電容 capacitance (C)
17. 電流 electric current (I)
18. 電流密度 electric current density 大小 \(|\vec{J}| \)

注意：背面有試題
19. 磁矩 magnetic moment 的大小 (μ₀)
20. 過度 vorticity 的大小 (Ω)
21. 真空中的介電係數 (vacuum permittivity or electric constant) (ε₀)
22. 真空中的磁導率 (vacuum permeability or magnetic constant) (μ₀)
23. 萬有引力 gravitational constant 常數 (G)
24. 蒲朗克常數 Planck’s constant (h)
25. 頻率 frequency (ν)

第二部份 計算證明題
26.（共 10 分）
有兩個相同的電阻，電阻大小都是 R，另外有兩個相同的彈簧，彈力常數都是 K，請估算
(a) 把兩個電阻串連起來的新電阻系統，其「有效電阻」為何？
(b) 把兩個電阻並連起來的新電阻系統，其「有效電阻」為何？
(c) 把兩個彈簧串連起來的新彈簧系統，其「有效彈力常數」為何？
(d) 把兩個彈簧並連起來的新彈簧系統，其「有效彈力常數」為何？

27.（共 12 分）
一個質量為 m 的鋼球，在一個無摩擦的水平軌道上來回運動。軌道兩端立有兩個垂直軌道
的鋼板。假設當鋼球撞到鋼板時，會發生完全彈性碰撞。
(a) 若兩鋼板以等速率，逐漸向中央靠攏，兩鋼板靠攏速率為 v₁。若鋼球初始速率為 v₀，
則經過六次碰撞後，鋼球的速率為何？
(b) 若兩鋼板以等速率分離，兩鋼板分離速率為 v₂。若鋼球初始速率為 v₀，則經過六次碰
撞後，鋼球的速率為何？
(c) 本實驗說明了日常生活中常見的哪一類型的熱力過程？

[注意:背面有試題]
28. （共 4 分）
這個考題是根據某一本故事書裡的情節所改寫的。有一位科學家，做了一個實驗，想要作弄
不知情的服務生。結果真的讓服務生誤以為遇到了鬼，嚇得丟了行李就跑。原來這位科學家
把一個靠電池電力運轉的留聲機按在皮，放在密閉的行李箱中，行李箱平躺放在地上（如下
圖）。他請車站的服務人員，幫他提起行李箱。一般人會預期，拿起行李箱後，原來面朝
+X 方向的行李箱面，將面朝 –X 方向。可是現在行李箱裡有一個正在轉動的留聲機按在皮
由上方看下去，是逆時針方向在打轉，請問當服務人員幫忙提起此行李箱時，原來面朝 +X
方向的行李箱面法線方向會朝向哪一個方向？請列出此新的法線方向會包含以下哪些分量
（多寫一個「一定不會出現」的分量，或少寫一個 「一定會出現」的分量，都算全錯）
(a) +x (b) +y (c) +z
(d) −x (e) −y (f) −z

29. （共 4 分）
用相同功率的微波加熱於以下系統 (a)–(e)，顯然，各系統的平均溫度增加數량五度所需花費
的時間各不相同，請將 (a)–(e) 依「花費時間最短」到「花費時間最長」依序排列。
(a) 一個密閉的系統，其中只有空氣與水蒸
(b) 一個密閉的系統，系統中有 1/2 的液態水，水面上方有空氣與水蒸
(c) 一個上方部分開放的系統，系統中有 1/2 的液態水，水面上方有空氣與水蒸
(d) 一個上方部分開放的系統，系統中有 1/4 的液態水，一整塊重量與水相同的冰，水面上
方有空氣與水蒸
(e) 一個上方部分開放的系統，系統中有 1/4 的液態水，重量與水相同的碎冰，水面上方有空
氣與水蒸

注意：背面有試題
30.（共 20 分）

一個質量為 \(m \)，帶電量為 \(q > 0 \) 的質點，在一個均勻的磁場與重力場中運動。若磁場強度為 \(B \)，方向沿水平方向，向北（定義為 + \(\hat{y} \) 方向）。重力場強度為 \(g \)，方向沿垂直方向，向下（定義為 + \(\hat{z} \) 方向）。依照右手定則，定義水平向東為 + \(\hat{x} \) 方向。若此質點的初速度夠大，則在一個迴旋週期中，可忽略重力的效應。

(a) 請問初速度大小 \(v_0 \) 要遠大於（一千倍於）哪一個物理量，我們就一定可以在一個迴旋週期中，忽略重力的效應？

(b) 請問當 (a) 中的條件成立時，此質點在磁場中迴旋一個週期的平均速度 \(\langle v \rangle \) 為何？

(c) 請問當 (a) 中的條件成立時，此質點在磁場中迴旋一個週期的平均電流 \(\langle I \rangle \) 為何？

(d) 請問當 (a) 中的條件成立時，此質點在磁場中迴旋一個週期的平均磁矩 \(\langle \mu \rangle \) 為何？

(e) 請問當 (a) 中的條件成立時，此質點在磁場中迴旋一個週期的平均角速度 \(\langle \omega \rangle \) 為何？

(f) 請問當 (a) 中的條件成立時，此質點在磁場中迴旋一個週期的平均角動量 \(\langle L \rangle \) 為何？

(g) 請問當 (a) 中的條件不成立時，例如，當此質點初速度大小為零時，請問此質點在磁場與重力場中運動的最高與最低點，兩者高度相差多少？

(h) 請問當此質點初速度等於零時，請繪出質點的軌跡（請標示座標方向），並估算此質點在運動軌跡中速率最大時的「動能」為何。