國立中央大學 109 學年度碩士班考試入學試題

所別：大氣科學學系大氣物理碩士班不分組(一般生)
大氣科學學系大氣物理碩士班不分組(在職生)

科目：大氣動力學

本科考試禁用計算器

※請在答寫卷(卡)內作答

一、(a) 氣壓(p)座標下水平動量方程式為
\[
\frac{D V}{D t} + f k \times V = -\nabla \Phi,
\]
其中 \(V = u \hat{i} + v \hat{j}\) 為水平速度，\(\Phi\)為重力位。試由此方程式在自然座標下得出梯度風(gradient-wind)平衡方程。(5分)

(b) 以尺度分析方法說明強烈颱風暴風圈內乃處於氣旋流(cyclostrophic flow)平衡。(5分)

(c) 由此梯度風下的熱力風平衡，說明強烈颱風的低層中心必須為暖心低壓。(5分)

二、在適當假設下，大氣運動過程中氣塊的位溫、位溝及絕對渦度皆具有物理量保存的性質(即隨時間不變)，但在有些情況下不會保守，試討論之。(10分)

三、請解釋 Rossby 波形成的原因，並試由線性化的正壓渦度方程(linearized barotropic vorticity equation)，證明相對於經向平均西風的 Rossby 波必須向西傳播，同時估計其相速。(15分)

四、試將水平動量方程式表達於直角座標(x, y, z)，由此推導出垂直渦度方程式，討論此方程式的各種物理頂端如何改變垂直渦度，並由此說明颱風環流如何增強及移動。(10分)

五、(a) 何謂 Ertel 位渦(potential vorticity)? 此位渦有何重要物理性質及意義?(5分)

(b) 說明此 Ertel 位渦方程的動量源(如摩擦力)與源(如潛熱)對位渦收支之貢獻。(10分)

六、(a) 何謂斜壓不穩定? 兩層準地轉模式所得到的最容易發展的斜壓波波長約為多少?(5分)

(b) 說明為何低於或超過此波長甚多的斜壓擾動反而會穩定下來。(5分)

(c) 試以能量學的觀點說明斜壓波擾動發展的機制以及與高、低層槽脊相關的關係。(10分)

七、準地轉經向平均的經向質量傳送流函数 \(\overline{\chi}\)，其環流型式在無小尺度摩擦作用下為椭圓方程式:

\[
\frac{\partial^2 \overline{\chi}}{\partial y^2} + \frac{f_0}{N^2} \frac{\partial}{\partial z} \left(\frac{1}{\rho_0} \frac{\partial \overline{\chi}}{\partial z} \right) = \rho_0 N^2 \left[\frac{\partial}{\partial y} \left(\frac{k \overline{\chi}}{H} - \frac{R}{H} \frac{\partial}{\partial y} \overline{v'v'} \right) - f_0 \frac{\partial^2}{\partial z \partial y} \overline{u'v'} \right]
\]

\(\overline{\chi}\)為經向平均的非絕熱(diabatic)加熱率，H為大氣特性高度，其餘變數則為一般定義。

(a) 試以此解釋觀測到的直接環流(Hadley cell)及間接環流(Ferrel cell)並繪圖加以說明。(10分)

(b) 試解經向環流(\(\overline{v}, \overline{w}\))如何配合非絕熱加熱及渦流熱量與動量通量以維持熱力風平衡。(5分)