國立中央大學八十五學年度碩士班研究生入學試題表 所別: 太多科學的不分組 科目: 電磁學 共一頁 第 1 頁

(1) Two infinitely long coaxial cylindrical conducting surfaces, have radii a and b (b>a), carry surface charge densities σ_a and σ_b , respectively.

- (a) Determine the electric field everywhere. (10%)
- (b) Determine the electric potential everywhere. (5%)
- (c) What must be the relation between the two surfaces in order that the electric field vanishes for r > b. (5%)
- (2) A point charge Q exists at a distance d above an infinite conducting plane which has a nonzero potential V.
 - (a) Determine the electric potential everywhere. (10%)
 - (b) Find the surface charge density on the plane. (5%)
 - (c) What is the electric force between the charge Q and the conducting plane ? (5%)
- (3) An infinitely long wire in free space carrying a current I is at z=d and a linear medium of permeability μ is filled in $z\leq 0$.
 - (a) Discuss the behavior of the normal and tangential components of the magnetic fields \vec{B} and \vec{H} at z=0. (8%)
 - (b) Find the magnetic fields \vec{B} and \vec{H} at an arbitrary point. (12%)
 - (c) Find the force acts on the wire per unit length. (5%)

(4)

- (a) Show that the electric field is zero and the magnetic field is constant in time inside a perfect conductor. (4%)
- (b) Show that the current in a superconductor (with infinite conductivity and vanishing \vec{B}) is confined to the surface. (6%)
- (5) The electric field \vec{E} of a uniform plane wave propagating in a medium is given by

 $\vec{E} = E_0[\hat{x}\cos(kz - wt) + 2\hat{y}\sin(kz - wt + \pi/4)]$ where E_0 is real.

- (a) Find the magnetic field \vec{B} . (5%)
- (b) Calculate the time average of energy density and energy flux density over one period. (15%)
- (c) Describe the polarization of the wave. (5%)