所別: 企業管理學系碩士班 一般乙組(一般生)

共9頁 第1頁

企業管理學系 碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

Part I Multiple-Choice Questions: (50 points)

Identify the letter of the choice that <u>best</u> completes the statement or answers the question. There are 25 multiple-choice questions. 2 points for each question. **Please mark your answers in the multiple-choice** answer card.

1. Suppose the flights of STARLUX airlines depart on time with a probability of 0.85 according to the previous record. The airlines want to predict the delays among 8 flights that will depart tomorrow. Let X be the number of on-time flights, and Y be the number of delayed flights. Define P_1 and P_2 as follows.

$$P_1 = \Pr(X > 5)$$

$$P_2=\Pr(Y\leq 3)$$

What is the relationship between P_1 and P_2 ?

- (A) $P_1 < P_2$
- (B) $P_1 = P_2$
- (C) $P_1 > P_2$
- (D) $P_1 + P_2 = 1$
- 2. X is a normal random variable with mean μ and standard deviation σ . k is a constant number. As the sample size increases, which one of the following statement is true about the probability $P(-k < \overline{X} < k)$, where \overline{X} is the sample mean?
 - (A) $P(-k < \overline{X} < k)$ increases.
 - (B) $P(-k < \overline{X} < k)$ decreases.
 - (C) $P(-k < \overline{X} < k)$ remains the same.
 - (D) Cannot be determined.
- 3. Let $A = P(-1 \le X \le 1)$, $B = P(-1 \le Y \le 1)$, and $C = P(-1 \le Z \le 1)$, where $X \sim \text{Normal}(-1, 1^2)$, $Y \sim \text{Normal}(0, 2^2)$, and $Z \sim \text{Normal}(0, 1^2)$. Choose the right inequality below:
 - (A) A > B > C
 - (B) C > A > B
 - (C) C > B > A
 - (D) A > C > B
- 4. X is a normal random variable with mean μ and standard deviation σ . Regarding the sample mean (\overline{X}) , which one of the following statements is <u>not</u> true?
 - (A) As the sample size increases, the standard deviation of \overline{X} decreases.
 - (B) As the sample size increases, the expected value of the sample mean remains the same.
 - (C) As the sample size increases, the 100(1- α)% confidence interval of μ becomes narrower.
 - (D) As the sample size increases, $P(\overline{X} > \mu)$ increases.

所別: 企業管理學系碩士班 一般乙組(一般生)

共 4 頁 第 2 頁

企業管理學系 碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 5. Suppose the population standard deviation is known. Which one of the following is *incorrect*?
 - (A) The wider the margin of error is, the wider the confidence interval is.
 - (B) The width of a confidence interval depends on the confidence coefficient.
 - (C) The larger the sample mean is, the wider the confidence interval is.
 - (D) When a sample is used to construct confidence intervals, the 98% confidence interval is always wider than the 95% confidence interval.
- 6. Regarding *t*-distribution, which one of the following is *incorrect*?
 - (A) The mean can be negative.
 - (B) When the degrees of freedom gets larger, the t-distribution approximates normal distribution.
 - (C) *t*-distribution is symmetric.
 - (D) When the degrees of freedom $n_1 > n_2$, the value of t_{α,n_1} is always smaller than the value of t_{α,n_2} .
- 7. Which of the following does <u>not</u> need to be known in order to compute the p-value?
 - (A) The level of significance.
 - (B) Knowledge of whether the test is one-tailed or two-tailed.
 - (C) The value of the test statistic.
 - (D) The distribution of the test statistics that should be used.
- 8. Using the same data set, if the null hypothesis is not rejected at the 1% level of significance, it
 - (A) may be rejected or not rejected at the 5% level of significance
 - (B) will always be rejected at the 5% level of significance
 - (C) will never be rejected at the 5% level of significance
 - (D) should never be tested at the 5% level of significance
- 9. Which following statement is **not** true for the difference of sample means $\overline{X}_1 \overline{X}_2$?
 - (A) $\overline{X}_1 \overline{X}_2$ is a parameter because \overline{X}_1 and \overline{X}_2 are population parameters.
 - (B) $\overline{x}_1 \overline{x}_2$ is a estimate for $\mu_1 \mu_2$.
 - (C) $\overline{x}_1 \overline{x}_2$ is always the middle point of the confident interval for $\mu_1 \mu_2$.
 - (D) $\overline{X}_1 \overline{X}_2$ is a random variable with expected value $\mu_1 \mu_2$.
- 10. A sample of 10 international locations was chosen and used to compare the calling rates per minute offered by CHT and TWM. Which of the following is correct?
 - (A) The sampling is matched and the observations are paired.
 - (B) The sampling is independent and the observations are paired.
 - (C) The sampling is matched and the observations are not paired.
 - (D) The sampling is independent and the observations are not paired.

所別: 企業管理學系碩士班 一般乙組(一般生)

共 9 頁 第 3 頁

企業管理學系 碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器, 廠牌、功能不拘

*請在答案卷(卡)內作答

In questions 11 to 25, please try to identify the following notations in *simple linear regression model* into 4 categories, which are given values, calculated values, parameters, or random variables.

- 11. Independent variable, X, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 12. Dependent variable, Y, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 13. Coefficient in the regression model, β_1 , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 14. The least squared estimator, b_1 , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 15. Sampling error based on a particular sample, $|\beta_1 b_1|$, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 6. The first observation in a particular sample, (x_1, y_1) , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.

企業管理學系碩士班 一般乙組(一般生) 所別:

第4頁 共9頁

企業管理學系碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 17. The error of the first observation (x_1, y_1) , ε_1 , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 18. The residual of the first observation (x_1, y_1) , e_1 , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 19. The predicted value of y for the first observation (x_1, y_1) , $\hat{y_1}$, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 20. The predicted value of y for a given value of x_p based on the least squared estimator, $\hat{y_p}$, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 21. Prediction interval estimate, P.I.E., is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 22. Test statistics of a t-test, t, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.

4

所別: 企業管理學系碩士班 一般乙組(一般生)

共9頁 第5頁

企業管理學系 碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 23. Test value of a F-test for a particular sample, F, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 24. Sum of squares due to the regression when the sample is not specified, SSR, is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.
- 25. The coefficient of the determination to fit a particular dataset of x and y, r^2 , is a
 - (A) given value;
 - (B) calculated value;
 - (C) parameter;
 - (D) random variable.

所別: 企業管理學系碩士班 一般乙組(一般生)

共 9 頁 第 6 頁

企業管理學系碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

Part II Workout Problems: (50 points)

1. (20 points) To estimate the population mean, μ , of a particular population, a *random sample* of size 5 is drawn. Let X_1, X_2, X_3, X_4, X_5 , denote the observations. Andy, Betty, Cathy, David, and Eddy propose different estimators of μ as following:

(A)ndy: Sample mean,
$$\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$
;

(B)etty: Weighted sample mean,
$$\frac{X_1+2X_2+3X_3+4X_4+5X_5}{15}$$
;

(C)athy: Median, $X_{(3)}$;

(D)avid: Weighted sample mean by order statistics,
$$\frac{X_{(1)}+2X_{(2)}+3X_{(3)}+2X_{(4)}+X_{(5)}}{9}$$
;

(E)ddy: Truncated sample mean,
$$\frac{X_{(2)}+X_{(3)}+X_{(4)}}{3}$$
.

Please compare these proposed estimators and **Rank** them based on unbiasedness, efficiency, consistency, and etc. Try to show your idea to support your comparison as much as possible, (for example, sufficient statistics,... etc.)

- 2. Following (1), assume the population follows a normal distribution. Frank has drawn a sample and provided a 95% confidence interval of (75, 95), Grace has drawn another sample and provided a 95% confidence interval of (72, 88), and Hector has drawn another sample and provided a 95% confidence interval of (73, 95).
 - (a) (5 points) What is the probability that all these three intervals cover the parameter μ ? Assume μ has a prior distribution of normal with mean 83 and variance 25.
 - (b) (10 points) Let's pool all observations of these three samples together, and please provide a pooled 95% confidence interval of μ . What is the probability of this pooled confidence interval covers μ .

所別: 企業管理學系 碩士班 一般乙組(一般生)

企業管理學系碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器, 廠牌、功能不拘

*請在答案卷(卡)內作答

- 3. Assume that the birthweight in grams of a baby born in Taiwan is $N(3315,525^2)$, boys and girls combined. Let X be the weight of a <u>baby girl</u> who is born at home in ChungLi city and assume that the distribution of X is $N(\mu_X, \sigma_X^2)$.
 - (a) (5 points) Using 11 observations of X, define a test statistic and critical region, $\alpha = 0.01$, for testing H_0 : $\mu_X = 3315$ against the alternative hypothesis H_a : $\mu_X > 3315$ (home-born babies are heavier).
 - (b) (5 points) Calculate the value of the test statistic and give your conclusion using the following weights:

3120 2657 3459 3629 3345 3629 3515 3856 3629 3345 3062

(c) (5 points) Let's assume the standard deviation of X is the same as the standard deviation of birthweight of a newborn baby in Taiwan. Please redo (a) and (b).

所別: 企業管理學系 碩士班 一般乙組(一般生)

共 9 頁 第 8 頁

企業管理學系碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

STANDARD NORMAL DISTRIBUTION

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean and z is .3944.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2518	.2549
.7	.2580	.2612	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4986	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

注意:背面有試題

所別: 企業管理學系 碩士班 一般乙組(一般生)


共9頁 第9頁

企業管理學系碩士班 一般丙組(一般生)

科目: 統計學

本科考試可使用計算器, 廠牌、功能不拘

*請在答案卷(卡)內作答

Entries in the table give t values for an area or probability in the upper tail of the t distribution. For example, with 10 degrees of freedom and a .05 area in the upper tail, $t_{.05} = 1.812$.

Degrees	Area in Upper Tail								
of Freedom	.10	.05	.025	.01	.005				
1	3.078	6.314	12.706	31.821	63.657				
2	1.886	2.920	4.303	6.965	9.925				
3	1.638	2.353	3.182	4.541	5.841				
4	1.533	2.132	2.776	3.747	4.604				
5	1.476	2.015	2.571	3.365	4.032				
6	1.440	1.943	2.447	3.143	3.707				
7	1.415	1.895	2.365	2.998	3.499				
8	1.397	1.860	2.306	2.896	3.355				
9	1.383	1.833	2.262	2.821	3.250				
10	1.372	1.812	2.228	2.764	3.169				
11	1.363	1.796	2.201	2.718	3.106				
12	1.356	1.782	2.179	2.681	3.055				
13	1.350	1.771	2.160	2.650	3.012				
14	1.345	1.761	2.145	2.624	2.977				
15	1.341	1.753	2.131	2.602	2.947				
16	1.337	1.746	2.120	2.583	2.921				
17	1.333	1.740	2.110	2.567	2.898				
18	1.330	1.734	2.101	2.552	2.878				
19	1.328	1.729	2.093	2.539	2.861				
20	1.325	1.725	2.086	2.528	2.845				
21	1.323	1.721	2.080	2.518	2.831				
22	1.321	1.717	2.074	2.508	2.819				
23	1.319	1.714	2.069	2.500	2.807				
24	1.318	1.711	2.064	2.492	2.797				
25	1.316	1.708	2.060	2.485	2.787				
26	1.315	1.706	2.056	2.479	2.779				
27	1.314	1.703	2.052	2.473	2,771				
28	1.313	1.701	2.048	2.467	2.763				
29	1.311	1.699	2.045	2.462	2.756				
30	1.310	1.697	2.042	2.457	2.750				
40	1.303	1.684	2.021	2.423	2.704				
60	1.296	1.671	2.000	2.390	2.660				
120	1.289	1.658	1.980	2.358	2.617				
∞	1.282	1.645	1.960	2.326	2.576				

