國立中央大學八十五學年度碩士班研究生入學試題卷

所別: 資訊管理研究所 丁組 科目: 離散數學 共 / 頁 第 / 頁

1. (10%)

- (a). Write the adjacency matrix of each component of the graph G with the given adjacency matrix.
- (b). Find the number of edge sequences of length 3 from vertex b to vertex d.

	a	ь	c	d		f	ø
a	[0	0	1	0	0	ó	1 ·
ь	0	0	0	- 1	1	2	•
c	1	•	0	•	0	0	ı
ð	0	ı	•	0	- 1	1	0
•	0	1	0	1	¢	0	0
f	0	ī 0	0	1	0	0	0
E	įι	0	1	•	0	0	0 0 1

- 2. (10%) How many of the equivalence relations on $A = \{a,b,c,d,e,f\}$ have (a) exactly two equivalence classes of size 3 ? (b) at least one equivalence class with three or more elements ?
- 3. (15%) (a). If x is a bit string, let c(x) be the maximum number of consecutive 0's in x. (Examples: c(10010) = 2, c(00110001) = 3.) Let Sn be the number of nbit strings x with $c(x) \le 2$. Develop a recurrence relation for Sn.

(b). Solve the recurrence relation
$$\sqrt{T_n} = \sqrt{T_{n-2}} + 2 \sqrt{T_{n-2}},$$
 with initial condition $T_0 = T_{n-1}$

with initial condition $T_0 = T_1 = 1$.

4. (15%) Determine whether each argument in (a),(b) and (c) is valid.

(a).
$$\frac{p \wedge \overline{p}}{}$$
 (b). $p \rightarrow (q \rightarrow r)$ (c) $(p \rightarrow q) \wedge (r \rightarrow s)$
 $\therefore q \qquad q \rightarrow (p \rightarrow r) \qquad p \vee r$
 $\therefore (p \vee q) \rightarrow r \qquad \therefore q \vee s$

- (15%) Prove that the number of vertices (V), edges (E), and faces (F) in an 5. arbitrary connected planar graph are related by the formula V+F=E+2.
- 6. (10%) Prove that It is possible to color the regions formed by any number of lines in the plane with only two colors.
- (10%) Define what is NP-complete. Explain the important characteristics of 7. NP-complete problems.
- (15%) Use an example to explain Kruskal's algorithm for finding the minimal 8. spanning tree, and prove that Kruskal's algorithm is correct.