(20%) 1. Let \(A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 2 & 3 \\ 1 & 3 & 3 & 3 \end{pmatrix} \) and \(b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \) and \(c = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

(a) Find the reduced row echelon form of \(A \) and the rank of \(A \). (5%)
(b) Find the inverse of \(A \) if it exists. (5%)
(c) Find the set of solutions of the linear system \(AX = b \). (5%)
(d) Find the set of solutions of the linear system \(AX = c \). (5%)

(30%) 2. Let \(A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \).

(a) Determine the characteristic polynomial of \(A \) and find the eigenvalues of \(A \). (6%)
(b) For each eigenvalue \(\lambda \) of \(A \), find the eigenspace corresponding to \(\lambda \). (8%)
(c) Determine whether \(A \) is diagonalizable. Explain why. (4%)
(d) Determine the Jordan canonical form of \(A \). (4%)
(e) Compute \(A^{101} \). (8%)

(20%) 3. Let \(V \) be the space of functions from \(\mathbb{R} \) to \(\mathbb{R} \) and let \(U \) be the subset consisting of continuous functions in \(V \). Let \(S = \{1, \sin x, \cos x\} \) and \(W = \text{Span}(S) \). Define \(T : W \to W \) by \(T(f) = f' \), where \(f' \) is the derivative of \(f \).

(a) Prove or disprove that \(U \) is a subspace of \(V \). (4%)
(b) Show that \(S \) is a basis for \(W \). (4%)
(c) Show that \(T \) is a linear transformation and find the null space of \(T \). (4%)
(d) Find the matrix representation of \(T \) in the ordered basis \(S \). (4%)
(e) For each eigenvalue \(\lambda \) of \(A \), find the set of eigenvectors corresponding to \(\lambda \). (4%)

(15%) 4. (a) State the Dimension Theorem. (5%)
(b) Let \(A, B \in M_{n \times n}(\mathbb{R}) \). Prove or disprove that \(\text{rank}(A) \geq \text{rank}(AB) \). (5%)
(c) Let \(A, B \in M_{n \times n}(\mathbb{R}) \). Prove or disprove that \(\text{rank}(B) \geq \text{rank}(AB) \). (5%)

(15%) 5. Let \(V = \mathbb{R}^4 \), \(S = \{(0,0,1,1),(0,1,0,1),(0,1,1,0)\} \) and \(W = \text{Span}(S) \).

(a) Find an orthogonal basis for \(W \). (8%)
(b) Determine the dimension of the orthogonal complement of \(W \). (3%)
(c) Find an orthogonal basis for the orthogonal complement of \(W \). (4%)