國立中央大學九十一學年度碩士班研究生入學試題卷

1. (20 分: Fixed-point iteration)

Let $F \in C[a, b]$ be such that $F([a, b]) \subseteq [a, b]$. Suppose that F' exists on [a, b] and a positive constant k < 1 exists with $|F'(x)| \le k$ for all $x \in [a, b]$. Then F has a unique fixed point p in [a, b].

- (a) Show that for any $p_0 \in [a, b]$, the sequence $\{p_n\}$ defined by $p_n = F(p_{n-1})$, $n \ge 1$, converges to the unique fixed point p of F in [a, b].
- (b) Suppose, in addition, that F' is continuous on [a,b] and $F'(p) \neq 0$. Show that $\{p_n\}$ converges linearly to p.

2. (20 分: Divided differences)

The following data are given for a polynomial P(x) of unknown degree:

\overline{x}	0	1	2
P(x)	2	-1	4

Determine P(x) if all third-order forward differences are 1. (<u>Hint</u>: The Newton forward-difference formula for function f(x) is $P_n(x) = \sum_{k=0}^n \binom{s}{k} \Delta^k f(x_0)$, where $P_n(x)$ is the *n*th Lagrange polynomial and $x = x_0 + sh$.)

3. (10 分: Numerical differentiation)

Assume that $f \in C^4[x_0 - h, x_0 + h]$. Using Taylor's theorem to derive the following three-point formula for approximating $f''(x_0)$:

$$f''(x_0) = \frac{1}{h^2} \Big\{ f(x_0 - h) - 2f(x_0) + f(x_0 + h) \Big\} - \frac{h^2}{12} f^{(4)}(\xi), \quad \text{for some } \xi \in (x_0 - h, x_0 + h).$$

4. (10 分: Gaussian quadrature)

Determine constants a, b, c, and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x)dx = af(-1) + bf'(-1) + cf(1) + df'(1)$$

that has degree of accuracy (degree of precision) 3.

5. (20 \Re : Error estimates for the approximate solution \tilde{x} of Ax = b)

Let $A \in \mathbb{R}^{n \times n}$ be a given symmetric and positive definite matrix, and $b \in \mathbb{R}^n$ be a given vector. Let $0 < \lambda_{\min} \le \lambda_2 \le \cdots \le \lambda_{n-1} \le \lambda_{\max}$ be the *n* real eigenvalues of matrix *A*.

(a) Show that the condition number $\mathcal{K}(A)$ of the nonsingular matrix A relative to the norm $\|\cdot\|_2$ is

$$\mathcal{K}(A) = \frac{\lambda_{\max}}{\lambda_{\min}}.$$

(b) Suppose that \tilde{x} is an approximation to the solution of Ax = b. Show that

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \left(\frac{\lambda_{\max}}{\lambda_{\min}}\right) \frac{\|\mathbf{r}\|_2}{\|\mathbf{b}\|_2}, \quad \text{provide } \mathbf{x} \neq \mathbf{0} \text{ and } \mathbf{b} \neq \mathbf{0},$$

where r is the residual vector for $\tilde{\mathbf{x}}$.

6. (20 分: Iterative technique for solving Ax = b)

Let $A = \{a_{ij}\} \in \mathbb{R}^{n \times n}$, $a_{ii} \neq 0$, for $i = 1, 2, \dots, n$, and $b \in \mathbb{R}^n$. The basic concept of iterative methods for solving the system of linear equations Ax = b is to convert the system into an equivalent system of the form x = Tx + c and lead to the iterations

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \text{ for } k = 1, 2, \cdots.$$

- (a) Let A = D + L U, where D is the diagonal matrix of A, -L is the strictly lower-triangular part of A, and -U is the strictly upper-triangular part of A. Find T and c for the SOR method.
- (b) Assume, in addition, that A is a symmetric and positive definite matrix. Please give a necessary and sufficient condition on the parameter ω in the SOR method to ensure the convergence of the method for any initial guess $\mathbf{x}^{(0)} \in \mathbb{R}^n$.