中央大學八十九學年度碩士班研究生入學試題卷

光電科學研究所 不分組 科目:

Find the solution of the following equations with given initial conditions:

$$\frac{dy_1}{dt} = 3y_1 + 4y_2 \qquad \frac{dy_2}{dt} = 4y_1 - 3y_2$$

Initial conditions: $y_1(0) = 1$, $y_2(0) = 3$

(14%)

2. Evaluate the following series

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots$$

by using the result of Fourier series expansion for the following function which is assumed to have a period 2π :

$$f(x) = \begin{cases} 1 & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$
 (14%)

3. Evaluate the following integral:

$$\int_0^{2\pi} \frac{d\theta}{5 - 4\cos\theta} \tag{14\%}$$

4. Find the eigenfunctions of a vibrating rectangular membrane (size a imes b) which is fixed at the boundary.

(a) what should λ be in order for the inverse matrix to exist?

(b) For $\lambda = 1$, find the inverse matrix of the matrix A.

(14%)

6. Evaluate the following line integral:

$$\int_{(300)}^{(234)} (x \, dx + y \, dy + z dz) \tag{10\%}$$

7. Find the distance between the point (1, 1, 2) and the plane which is defined by (10%)three points (0, 1, 0), (1, 1, 3), and (5, 0, 1).

8. Find the directional derivative of $\,f\,$ at $\,P\,$ in the direction of $\,G\,$

$$f = e^x \cos y$$
, $P = (2, \pi, 0)$, $a = 2\hat{i} + 3\hat{k}$ (10%)