九十五學年度電機系碩士在職專班試題卷 #2頁第1頁

95. 3. 13

應考時間:100分鐘

科目: 基礎電子學

1. (10 pts)

For an OPA circuit shown in Fig. 1,

- (1) Derive an expression for the transfer function $V_0(s)/V_i(s)$. Sketch the transfer function. (3 pts)
- (2) If the required input resistance is 1 k Ω , design R_1 , R_2 and C_2 to obtain a dc gain of 40 dB, a 3-dB frequency of 1 kHz. (3 pts)
- (3) At what frequency does the magnitude of transfer function become unity? What is the phase angle at this frequency? (4 pts)

2. (10 pts)

The current source circuit of Fig. 2 utilizes a pair of matched pnp transistors having $I_S = 10^{-15}$ A, $\beta = 50$, and $|V_A| = 50$ V, $V_T = 25$ mV. It is required to design the circuit to provide an output current $I_O = 1$ mA at $V_O = 2$ V.

- (1) What values of I_{REF} and R are needed? Hint: $ln(10) \sim 2.3$, $ln(106) \sim 4.66$. (5 pts)
- (2) What is the maximum allowed value of V_O while the current source can operate properly? (5 pts)

3. (15 pts)

A CMOS differential amplifier shown in Fig. 3 is biased with a current I = 0.8 mA. The design parameters are listed as follows: (W/L) = 100, $\mu_n C_{ox} = 0.2$ m A/V², $V_A = 20$ V, I = 0.8 mA, $C_{gs} = 50$ fF, $C_{gd} = 10$ fF, and $C_{db} = 10$ fF, $R_D = 5$ k Ω . Also, there is a 100 fF capactive load between each drain and ground.

- (1) Find the overdrive voltage V_{OV} and g_m for each transistor. (5 pts)
- (2) Find the differential gain A_d . (5 pts)
- (3) If the input signal source has a small resistance R_{sig} and thus the frequency response is determined primarily by the output pole, estimate the 3-dB frequency f_H . (5 pts)

Figure 1

Figure 2

Figure 3

4. (20 pts)

- (a) In a memory chip, how many transistors are needed for a NOR row decoder with an M-bit address? (5 pts)
- (b) In a memory chip, how many transistors are needed for a tree decoder when there are 2^N bit lines? (5 pts)
- (c) In a particular DRAM chip having the storage cell consists a single n-channel MOSFET and a storage capacitors C_S , if $C_S = 20$ fF, the bit-line capacitance $C_B = 0.8$ pF, the transistor V_I (including the body effect) = 1 V, $V_{DD} = 3.3$ V, estimate the output readout voltage for a stored 1 and a stored 0. Recall that in a read operation, the bit lines are precharged to $V_{DD}/2$. (10 pts)

九十五學年度電機系碩士在職專班試題卷 共2頁第2頁

科目: 基礎電子學

95. 3. 13

應考時間:100分鐘

5. (15 pts)

Find and plot the transfer characteristic for the circuit shown in Fig. 4.

Fig. 4

Fig. 5

6. (5 pts)

Zener diode also has the function of rectification. Is there any difference in the mechanism of rectification between forward-biased p-n diode and Zener diode? Why?

7. (11 pts)

Figure 5 shows a typical doping profile of an npn BJT.

- (a) Can you tell me that why the emitter doping concentration is much higher than the collector doping concentration and base doping concentration? (5 pts)
- (b) If you interchange the emitter and collector terminals of a BJT (i.e. the BJT is operated in reverse forward active mode), what will happen in the current gain (β) , injection efficiency (α) ? Why? (6 pts)

8. (14 pts)

- (a) There are three kinds of basic structure of BJT amplifier (CE, CB, and CC). For a good current amplifier what kind of combination (which part for amplifying and which part for I/O stage) would be used? Why? (5 pts)
- (b) Figure 6(a) and 6(b) show the typical i_D - v_{DS} and i_C - v_{CE} curves for a MOSFET and an npn BJT, respectively. Please answer the following questions:
 - 1. Can you explain why the BJT has superior linearity and transconductance (g_m) to MOSFET? (5 pts)
- 2. What kind of MOSFET would correspond to the i_D - v_{DS} shown in Fig. 6(a)? Why? (4 pts) (Enhancement N (P) MOSFET or Depletion N (P)MOSFET)

Figure 6