國立中央大學通訊工程學系 98 學年度碩士在職專班入學筆試 【基本通訊概論】試卷

考試地點:通訊館一樓 E1-109 室 考試時間:100 分鐘 試題總分:100分

- 1. [10 %] Please determine the following statement whether it is true or false: If $X_1, X_2, ..., X_N$ are random variables, then $\operatorname{var}\left\{\sum_{i=1}^N a_i X_i\right\} = \sum_{i=1}^N a_i^2 \operatorname{var}\{X_i\}$. $\operatorname{var}\{X\}$ is the variance of the random variable X. Please explain for your answer.
- 2. [10 %] Please determine the following statement whether it is true or false: If $X_1, X_2, ..., X_N$ are random variables, then $E\left\{\sum_{i=1}^N a_i X_i\right\} = \sum_{i=1}^N a_i E\{X_i\}$. $E\{X\}$ is the expectation of the random variable X. Please explain for your answer.
- 3. [10 %] Sketch the double-sided spectra of $x_a(t) = 5\cos(4\pi t \pi/3)$.
- **4.** [10%] Please determine the probability of the first error occurring at the 1000^{th} transmission in a digital data transmission system where the probability of error is $p = 10^{-6}$.
- 5. [10 %] A random signal has the autocorrelation function $R(\tau) = 5 + 2\Lambda(\tau/10)$ where $\Lambda(x)$ is the unit-area triangular function defined as $\Lambda(t/\tau) = \begin{cases} 1 (|t|/\tau) & |t| < \tau \\ 0, & \text{otherwise} \end{cases}$. Please determine (a) The total power. (b) The ac power.
- 6. [10 %] (a) X_1 and X_2 are two independent Gaussian random variables. Each has zero mean and unit variance. $Y = X_1 + X_2$.
 - (a) Please determine the mean of Y.
 - (b) Please write the expression of the probability density function (pdf) of Y, $f_Y(y)$.

 (Gaussian pdf: $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-m)^2/2\sigma^2}$, $-\infty < x < \infty$, where m is the mean and σ^2 is the variance.)

7. [10 %] A signal with a waveform shown in the following figure is fed into the system with the impulse response:

$$h(t) = \delta(t) - 3\delta(t-5) + 5\delta(t-10).$$

Please sketch the output waveform of the system output.

- **8.** [10 %] Consider the analog signal $x_a(t) = 3\sin(50\pi t) + 10\sin(300\pi t) \cos(100\pi t)$. Determine the Nyquist sampling rate for $x_a(t)$.
- 9. [10 %] Please write down two modulation schemes of (a) digital modulation (b) analog modulation, respectively.
- 10. [10 %] Digital binary data is to be transmitted through a baseband system with $N_0 = 10^{-7} \, \text{W/Hz}$ and the received signal amplitude $A = 20 \, \text{mV}$. The average probability of error P_E is given by the approximation $P_E \cong \frac{e^{-z}}{2\sqrt{\pi z}}$ where z is " E_b -over- N_e ". (a) If 10^3 bits per second (bps) are transmitted, what is the average probability of error P_E ? (b) If 10^5 bps are transmitted, to what value must A be adjusted in order to attain the same P_E as in part (a)?