1. [10 %] Please determine the following statement whether it is true or false: If \(X_1, X_2, \ldots, X_k \) are random variables, then \(\text{var} \left(\sum_{i=1}^{k} a_iX_i \right) = \sum_{i=1}^{k} a_i^2 \text{var}(X_i) \). \(\text{var} \{X\} \) is the variance of the random variable \(X \). Please explain for your answer.

2. [10 %] Please determine the following statement whether it is true or false: If \(X_1, X_2, \ldots, X_k \) are random variables, then \(E \left(\sum_{i=1}^{k} a_iX_i \right) = \sum_{i=1}^{k} a_iE(X_i) \). \(E \{X\} \) is the expectation of the random variable \(X \). Please explain for your answer.

3. [10 %] Sketch the double-sided spectra of \(x_a(t) = 5\cos(4\pi t - \pi/3) \).

4. [10%] Please determine the probability of the first error occurring at the 1000\(^{th}\) transmission in a digital data transmission system where the probability of error is \(p = 10^{-6} \).

5. [10 %] A random signal has the autocorrelation function \(R(\tau) = 5 + 2\Lambda(\tau/10) \)
where \(\Lambda(x) \) is the unit-area triangular function defined as \(\Lambda(t/\tau) = \begin{cases} 1 - |t/\tau| & |t| < \tau \\ 0 & \text{otherwise} \end{cases} \).
Please determine (a) The total power. (b) The ac power.

6. [10 %] (a) \(X_1 \) and \(X_2 \) are two independent Gaussian random variables. Each has zero mean and unit variance. \(Y = X_1 + X_2 \).
(a) Please determine the mean of \(Y \).
(b) Please write the expression of the probability density function (pdf) of \(Y, f_Y(y) \).
(Gaussian pdf: \(f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\left(x-m\right)^2/2\sigma^2}, -\infty < x < \infty \), where \(m \) is the mean and \(\sigma^2 \) is the variance.)
7. [10 %] A signal with a waveform shown in the following figure is fed into the system with the impulse response:

\[h(t) = \delta(t) - 3\delta(t-5) + 5\delta(t-10). \]

Please sketch the output waveform of the system output.

8. [10 %] Consider the analog signal \(x_a(t) = 3\sin(50\pi t) + 10\sin(300\pi t) - \cos(100\pi t) \). Determine the Nyquist sampling rate for \(x_a(t) \).

9. [10 %] Please write down two modulation schemes of (a) digital modulation (b) analog modulation, respectively.

10. [10 %] Digital binary data is to be transmitted through a baseband system with \(N_0 = 10^{-3} \text{ W/Hz} \) and the received signal amplitude \(A = 20 \text{ mV} \). The average probability of error \(P_e \) is given by the approximation \(P_e \equiv \frac{e^{-z}}{2\sqrt{\pi z}} \) where \(z \) is "\(E_s \)-over-\(N_o \)". (a) If \(10^3 \) bits per second (bps) are transmitted, what is the average probability of error \(P_e \)? (b) If \(10^5 \) bps are transmitted, to what value must \(A \) be adjusted in order to attain the same \(P_e \) as in part (a)?